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Logistic regression
I Logistic regression is for binary classification
I The target variable y takes on values in {0, 1}
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Binary classification
The goal of binary classification is to learn hθ(x), which can be used
to assign a label y ∈ {0, 1} to the input x. Label y takes values in
{0, 1}, so we can use Bernoulli distribution to specify its probability
distribution. Specifically

Pr(y = 1) = hθ(x)
Pr(y = 0) = 1− hθ(x)

Or more succinctly

Pr(y) = hθ(x)y (1− hθ(x))1−y
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Bernoulli distribution
A Bernoulli random variable X takes values in {0, 1}

Pr(X|θ) =
{
θ if X = 1
1− θ otherwise

= θX(1− θ)1−X

Example usage
Bernoulli distribution Ber(X|θ) can be used to model coin tosses.
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Likelihood for binary classification
Under the assumption that data is independant and identically
distributed (i.e., i.i.d.) the likelihood for the entire data is

Pr(y|X, θ) =
N∏
i=1

hθ(x(i))y(i) (1− hθ(x(i))
)1−y(i)

What form should hθ(.) take?
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Entropy
I Average level of information in a random variable.
I Given a discrete random variable X, which takes values in the

alphabet X and is distributed according to p : X → [0, 1]:

H(X) = −
∑
x∈X

p(x) log p(x) = Ex∼p(x)[− log p(x)]

I Choice of base for log varies with applications
I Base 2 gives the unit of bits or shannons
I Base e gives units of nats
I Base 10 gives units of dits, bans, or hartley

Figure from https://en.wikipedia.org/wiki/Entropy
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Cross entropy
I Cross-entropy beween two distributions p and q is a measure of

the average number of bits needed to identify an event from a
set X with true distribution p when the coding scheme used for
the set is optimized for an estimated probability distribution q

H(p, q) = −
∑
x∈X

p(x) log q(x) = −Ex∼p(x)[log q(x)]

Faisal Qureshi
= - 0.2 * log 0.5  - 0.8 log 0.5
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Lets consider a simple 1D case for binary classification
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Sigmoid function
sigm(x) refers to a sigmoid function, also known as the logistic or
logit function.

sigm(x) = 1
1 + e−x

= ex

ex + 1
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Logistic regression
For logistic regression, we set hθ(x) = sigm(xT θ). So

Pr(y|X, θ) =
N∏
i=1

[
1

1 + e−x(i)T
θ

]y(i) [
1− 1

1 + e−x(i)T
θ

]1−y(i)

where

xT θ = θ0 +
M∑
i=1

θixi

.
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Sigmoid function

Pr(y|x, θ) =
[ 1

1 + e−(θ0+θ1x)

]y [
1− 1

1 + e−(θ0+θ1x)

]1−y

I θ = (θ0, θ1) are model parameters.
I θ0 controls the shift.
I θ1 controls the scale (how steep is the slope of the sigmoid

function).
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MLE for logistic regression (1)
Likelihood

L(θ) = Pr(y|X, θ)

Negative log-likelihood

l(θ) = − logL(θ)

= −
N∑
i=1

y(i) log hθ(x(i)) + (1− y(i)) log(1− hθ(x(i)))

We prefer to work in the log domain for mathematical convenience.
Plus there are numerical advantages of working in the log domain.
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MLE for logistic regression (2)
Goal

Our goal is to find parameters θ that maximize the likelihood (or
minimize the negative log-likelihood).

θ∗ = arg min
θ

l(θ)
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Derivative of sigmoid

d

dx
sigm(x) = d

dx

1
1 + e−x

= −(−1)e−x

(1 + e−x)2

=
(

e−x

1 + e−x

)( 1
1 + e−x

)

=
(

1− 1 + e−x

1 + e−x

)( 1
1 + e−x

)
=
(

1− 1
1 + e−x

)( 1
1 + e−x

)
= (1− sigm(x)) sigm(x)
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Gradient of a sigmoid w.r.t. θ

We know that
d

dx
sigm(x) = (1− sigm(x)) sigm(x)

It follows
d

dθ
sigm(xT θ) =

(
1− sigm(xT θ)

)
sigm(xT θ)x
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MLE for logistic regression
Negative log likelihood contribution by sample i

l(i)(θ) =− y(i) log hθ(x(i))
− (1− y(i)) log(1− hθ(x(i)))

=− y(i) log sigm(x(i)T
θ)

− (1− y(i)) log(1− sigm(x(i)T
θ))

Gradient of l(i)(θ):
∇θl(i) =?
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MLE for logistic regression
Notation change
I Replacing sigm(x(i)T ) with s
I Replacing y(i) with y
I Replacing x(i) with x

∇θl(i) =∇θ [−y log s− (1− y) log(1− s)]

=− y s(1− s)x
s

− (1− y)s(1− s)x1− s
=− yx + ysx− sx− ysx
=− yx− sx
=− x(y − s)

Therefore (after fixing the notation),
∇θl(i) = −x(i)(y(i) − hθ(x(i)))
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MLE for logistic regression
Gradient of l(θ) for ith example

∇θl(i) = −x(i)(y(i) − hθ(x(i)))

Stochastic gradient descent rule

θ(k+1) = θ(k) − η∇l(i)(θ)

= θ(k) + ηx(i)(y(i) − hθ(x(i)))

= θ(k) + ηx(i)(y(i) − sigm(x(i)T
θ)),

where η is the learning rate and k refers the the gradient descent
iteration (step).
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Logistic regression for binary classification
Given a point x(∗), classify using the following rule

y(∗) =
{

1 if Pr(y|x(∗), θ) ≥ 0.5
0 otherwise

The decision
boundary is
xT θ = 0.
Recall that this is
where the sigmoid
function is 0.5.
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Logistic regression for binary classification
I The decision boundary is xT θ = 0

I This is where sigm function is 0.5
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Network view of logisitc regression
I By changing the activation function to sigmoid and using the

cross-entropy loss instead the least-squares loss that we use for
linear regression, we are able to perform binary classification.

Artificial neuron
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Summary
I We looked at logisitc regression, a binary classifier.
I Bernoulli distribution

I Linear regression and logistic regression topics provide an
excellent opportunity to study and understand the concepts
underpinning neural networks
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