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Lesson Plan
▶ Convolutional Networks
▶ Convolution
▶ Pooling layers
▶ Dilated convolutions
▶ Common architecture

▶ GoogLeNet
▶ ResNet
▶ Densenet
▶ Squeeze-and-Excitation network

▶ ConvNext
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Convolutional networks for computer vision tasks
Task: We want to classify the following image
import cv2
import matplotlib.pyplot as plt

img = cv2.imread('./convnets/1.jpeg', 0)
plt.figure(figsize=(10,8))
plt.imshow(img, cmap='gray')
plt.xlabel('width')
plt.xticks([])
plt.ylabel('height')
plt.yticks([])
plt.title(f'Image dimensions: {img.shape[0]} x {img.shape[1]}. #pixels: {img.shape[0] * img.shape[1]}');
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Classical neural networks for computer vision tasks

▶ Q. How many paramters per
hidden layer unit?

▶ Computational issues
▶ Poor performance

▶ The model is prone to
overfitting

▶ Model capacity issues
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Convolutional neural network
▶ David Hubel and Torsten Wiesel studied cat visual cortex and

showed that visual information goes through a series of
processing steps: 1) edge detection; 2) edge combination; 3)
motion perception; etc. (Hubeland Wiesel, 1959)
▶ Neurons are spatially localized
▶ Topographic feature maps
▶ Hierarchical feature processing
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Convolutional layers
▶ Convolutional layers achieve these properties

▶ Each output unit is a linear function of a localized subset of
input units

▶ Same linear transformation is applied at each location
▶ Local features detection is translation invariant
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Convolutional layers
▶ Convolutional layers provide architectural constraints
▶ Number of parameters depend upon kernel sizes and not the

size of the input
▶ Inductive bias

▶ Examples:
▶ Architectural constraints
▶ Image augmentation
▶ Regularization
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Convolutional Neural Networks
▶ Proposed in 1980 by Kunihiko Fukushima

Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in
position, Biological Cybernetics. 1980

https://link.springer.com/article/10.1007/BF00344251
https://link.springer.com/article/10.1007/BF00344251
https://link.springer.com/article/10.1007/BF00344251


9 / 73

LeNet
▶ Classifying digits (LeCun 1988)
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LeNet
▶ The first few layers are convolution layers, and the last few

layers are fully connected layers

▶ Q. Why?
▶ The convolutional layers are compute heavy, but have fewer

parameters
▶ The fully connected layer have far more parameters, but these

are easy to compute
▶ Convolutional layers compute features
▶ Linear layers implement structure similar to the classical

aritifical neural networks
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AlexNet
▶ ImageNet Large Scale Visual Recognition Competition, 2012

▶ Top-5 error of 15.3%, more than 10.8 percentage points lower
than that of the runner up.

▶ Model depth (i.e., the number of layers) is important for
performance
▶ Computational expensive; requires GPUs for training

Figure from Krizhevsky, Sutskever, and Hinton, 2012

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
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ImageNet
▶ https://www.image-net.org/index.php
▶ Currently ImageNet has 14 million images and roughly 21,000

classes.

https://www.image-net.org/index.php
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LeNet vs. AlexNet

Figure from Wikipedia

https://en.wikipedia.org/wiki/AlexNet#cite_note-:2-3
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General idea
▶ Generally speaking we can interpret convolutional deep

networks as composed of two parts: 1) a (latent) feature
extractor and 2) task head.
▶ Feature extractor learns to construct powerful representations

given an input. These representations are well-suited to the task
at hand.

▶ The task head uses these features to perform that task, e.g.,
classification, regression, etc.
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Feature Maps
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Feature Maps
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Convolution
▶ In a nutshell: point-wise multiplication and sum

(f ∗ k)i =
∑

k∈[−w,w]
f(i − k)h(k)
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Exercise: computing a 1D convolution (from scratch)
Compute f ∗ h given

f =
[

1 3 4 1 10 3 0 1
]

and

h =
[

1 0 −1
]

import numpy as np

f = np.array([1,3,4,1,10,3,0,1])
h = np.array([1,0,-1])
width = 1
result = np.ones(len(f)-2*width) # Array to store computed moving averages
for i in range(len(result)):

centre = i + width
result[i] = np.dot(h[::-1], f[centre-width:centre+width+1]) # Note the flip

print(f'signal f:\t\t{f}')
print(f'kernel h:\t\t{h}')
print(f'convolution (f*h):\t{result}')
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Dealing with edges

▶ Clipping
▶ Replication
▶ Symmetric padding
▶ Circular padding
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Convolutions as matrix-vector multiplication
▶ Exercise: Describe 1D convolution as a matrix-vector

multiplication.
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Convolution layer
▶ We can define the convolution layer used in deep networks as

follows

zi′,j′,f ′ = bf ′ +
Hf∑
i=1

Wf∑
j=1

F∑
f=1

xi′+i−1,j′+j−1,f θijff ′ .
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Convolution layer

Normal

Depthwise Depthwise
Separable

Depthwise Separable convolution

▶ Far fewer parameters than normal convolution
▶ Computational efficiency
▶ Prevents overfitting
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Convolution layer

1x1 convolutions

▶ Change feature dimensions
▶ Dimensionality reduction
▶ Reduce computational load
▶ Add additional non-linearity
▶ Implement bottleneck layer

Dilated or atrous convolutions

▶ Increased receptive field without
increasing parameters

▶ Can capture features at
multiple scales

▶ Reduced spatial resolution loss
compared to regular
convolutions with larger filters

▶ Increased computational cost
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Pooling layers

▶ Pooling layers are commonly used after convoluational layers
▶ Decrease feature dimensions
▶ Create some invariance to shifts
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Pooling layers

▶ Average pooling

hk(x, y, c) = 1
N (x, y)

∑
(i,j)∈N(x,y)

hk−1(i, j, c)

▶ Maxpooling

hk(x, y, c) = arg max
(i,j)∈N (x,y)

hk−1(i, j, c)
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Pooling layers
▶ Springenberg et al. 2015 (ICLR workshops)

maxpooling can simply be replaced by a convolutional layer
with increased stride without loss in accuracy on several
image recognition benchmarks
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Common architectures
Run the following code to see the list of models included in
torchvision.models

import torchvision
import torchvision.models as m
import pprint as pp
print(f'torchvision\nVERSION: {torchvision.__version__}')
print('MODELS:')
pp.pprint([x for x in dir(m) if x[0] != '_'])

# print out the structure of vgg16 model
vgg16 = m.vgg16()
print(vgg16)
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GoogLeNet

▶ Szegedy et al. 2014
Going Deeper with Con-
volutions

▶ Multiple feed-forward passes
▶ Inception module

▶ An inception module aims
to approximate local
sparse structure in a CNN
by using filters of different
sizes (within the same
block) whose output is
concatenated and passed
on to the next stage

https://arxiv.org/abs/1409.4842
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Inception layer
▶ Acts as a bottleneck layer
▶ 1-by-1 convolutional layers are used to reduce feature channels

Inception layer (simplified). Each conv is followed by a non-linear
activation.
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ResNet

▶ He et al. 2016
Deep Residual Learning
for Image Recognition

Left: the VGG-19 model (19.6 billion FLOPs) as a reference. Middle: a
plain network with 34 parameter layers (3.6 billion FLOPs). Right: a
residual network with 34 parameter layers (3.6 billion FLOPs). The dotted
shortcuts increase dimensions. Figure from He et al. 2016.

https://arxiv.org/abs/1512.03385
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Residual unit

▶ Pass through connections
adds the input of a layer to
its output

▶ Deeper models are harder to
train

▶ Learn residual function
rather than direct mapping
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Residual unit
▶ Notice the loss landscape with (right) and without (left)

residual connections

Figure taken from K. Derpanis notes on deep learning.
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Densenet
▶ Huang et al. 2017

Densely Connected Convolutional Networks

Figure from Huang et al. 2017.

https://arxiv.org/abs/1608.06993
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Densenet

▶ Feature-maps learned by any of the layers can be accessed by
all subsequent layers.
▶ Encourages feature reuse throughout the network
▶ Leads to more compact models
▶ Supports diversified depth

▶ Improved training
▶ Individual layers get additional supervision from loss function

through shorter (more direct) connections
▶ Similar to DSN (Lee et al. 2015) that attach classifiers to each

hidden layer forcing intermediate layers to learn discriminative
features

▶ Scale to hundreds of layers without any optimization difficulties



45 / 73

Densenet

▶ Feature-maps learned by any of the layers can be accessed by
all subsequent layers.
▶ Encourages feature reuse throughout the network
▶ Leads to more compact models
▶ Supports diversified depth

▶ Improved training
▶ Individual layers get additional supervision from loss function

through shorter (more direct) connections
▶ Similar to DSN (Lee et al. 2015) that attach classifiers to each

hidden layer forcing intermediate layers to learn discriminative
features

▶ Scale to hundreds of layers without any optimization difficulties



46 / 73

Dense blocks and transition layers

Figure from Huang et al. 2017
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Densenet vs. Resnet

Figure from Huang et al. 2017
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Squeeze-and-Excitation Networks
▶ Hu et al. 2018

Squeeze-and-Excitation Networks

Figure from Hu et al. 2018

https://arxiv.org/abs/1709.01507
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SE Block

▶ Squeeze operator
▶ Allows global information to be used when computing

channel-wise weights

▶ Excitation operator
▶ Distribution across different classes is similar in early layers,

suggesting that feature channels are “equally important” for
different classes in early layers

▶ Distribution becomes class-specific in deeper layers

▶ SE blocks may be used for model prunning and network
compression



50 / 73

SE Block

▶ Squeeze operator
▶ Allows global information to be used when computing

channel-wise weights

▶ Excitation operator
▶ Distribution across different classes is similar in early layers,

suggesting that feature channels are “equally important” for
different classes in early layers

▶ Distribution becomes class-specific in deeper layers

▶ SE blocks may be used for model prunning and network
compression



51 / 73

SE Block

▶ Squeeze operator
▶ Allows global information to be used when computing

channel-wise weights

▶ Excitation operator
▶ Distribution across different classes is similar in early layers,

suggesting that feature channels are “equally important” for
different classes in early layers

▶ Distribution becomes class-specific in deeper layers

▶ SE blocks may be used for model prunning and network
compression



52 / 73

SE Performance

Taken from Hu et al. 2018
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Spatial attention
▶ SE computes channel weights; however, we can easily extend

this idea to compute spatial weights to model some notion of
spatial attention
▶ The model will pay more attention to f
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Other notable examples
▶ Larsson et al., 2016

FractalNet: Ultra-Deep Neural Networks without Residuals

▶ Iandola et al., 2016
SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Pa-
rameters and <0.5MB Model Size

▶ Howard et al., 2017
MobileNet: Efficient Convolutional Neural Networks for
Mobile Vision Applications

http://people.cs.uchicago.edu/~larsson/fractalnet/
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1704.04861
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Other notable examples
▶ Xie et al., 2017

Aggregated Residual Transformation for Deep Neural Net-
works

▶ Han et al., 2016
Deep Pyramidal Residual Networks

▶ Chollet, 2017
Xception: Deep Learning with Depthwise Separable Con-
volutions

https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1610.02915
https://arxiv.org/abs/1610.02357
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Attention-based Networks
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Transformers (2017)

▶ Vaswani et al., 2017
Attention Is All You
Need

▶ Transformers use
attention-based computation.

▶ These models are popular in
Natural Language Processing
community.

▶ GPT3 language model also
uses attention-based
computation and it has
roughly 175 billion
parameters.

https://arxiv.org/abs/1706.03762


58 / 73

Attention
▶ Zhao et al., 2020

Exploring Self-attention for Image Recognition

▶ Carion et al., 2020
End-to-End Object Detection with Transformers

▶ Dosovitsky et al., 2020
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale

▶ Zheng et al., 2020
Rethinking Semantic Segmentation from a Sequence-to-
Sequence Perspective with Transformers

https://arxiv.org/abs/2004.13621
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2012.15840
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Learning convolution kernels
▶ Observation

▶ CNNs benefit from different kernel sizes at different layers
▶ Exploring all possible combinations of kernel sizes is infeasible in

practice
▶ Romero et al. 2022

FlexConv: Continuous Kernel Convolutions with Differen-
tiable Kernel Sizes

▶ Riad et al. 2022
Learning Strides in Convolutional Neural Networks

https://arxiv.org/abs/2110.08059
https://arxiv.org/abs/2202.01653
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MLPs
▶ Tolstikhin et al. 2021

MLP-Mixer: An all-MLP Architecture for Vision

▶ Melas-Kyriazi 2021
Do You Even Need Attention? A Stack of Feed-Forward
Layers Does Surprising Well on ImageNet

▶ Touvron et al. 2021
ResMLP: Feedforward Networks for Image Classification
with Data Efficient Training

https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.02723
https://arxiv.org/abs/2105.03404
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A ConvNet for 2020
▶ Liu et al. 2020

A ConvNet for 2020s

Figure from Lie et al. 2020

https://arxiv.org/abs/2201.03545
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Key ideas
▶ Change stem to Patchify

Replace the ResNet-style stem cell with a patchify layer
implemented using a 4 × 4, stride 4 convolutional layer.
The accuracy has changed from 79.4% to 79.5%.
The stem cell in standard ResNet contains a 7 × 7 convo-
lution layer with stride 2, followed by a max pool, which
results in a 4× downsampling of the input images.
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Key ideas
▶ ResNeXtify

▶ Grouped convolutions idea from Xie et al. 2016
▶ Depthwise convolution where the number of groups equal to

the number of channels. Similar to MobileNet and Xception.
▶ Only mixes information in the spatial domain.

The combination of depthwise conv and 1 × 1 convs leads
to a separation of spatial and channel mixing, a property
shared by vision Transformers, where each operation either
mixes information across spatial or channel dimension, but
not both.

https://arxiv.org/abs/1611.05431
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Key ideas
▶ Inverted bottleneck

One important design in every Transformer block is that it
creates an inverted bottleneck, i.e., the hidden dimension of
the MLP block is four times wider than the input dimension.

Figure from Lie et al. 2020
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Key ideas
▶ Large kernel sizes

One of the most distinguishing aspects of vision Trans-
formers is their non-local self-attention, which enables each
layer to have a global receptive field.
To explore large kernels, one prerequisite is to move up the
position of the depthwise conv layer.
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Key ideas
▶ Replacing ReLU with GELU

▶ Gaussian Error Linear Unit (Hendrycks and Gimpel, 2016)
▶ Use fewer activation functions
▶ Use fewer normalization layers

▶ Replace batch normalization with layer normalization

https://arxiv.org/abs/1606.08415
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ConvNext

Figure from Lie et al. 2020
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ConvNext

Figure from Lie et al. 2020
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Aside: Normalization techniques
Wu and He, 2018

Figure from Wu and He 2018

https://arxiv.org/pdf/1803.08494.pdf
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Is object detection solved?

▶ Barbu et al. 2019
ObjectNet: A Large-
Scale Bias-Controlled
Dataset for Pushing
the Limits of Object
Recognition Models‘

▶ Performance on ObjectNet
benchmark
▶ 40 to 45% drop in

performance

https://objectnet.dev/objectnet-a-large-scale-bias-controlled-dataset-for-pushing-the-limits-of-object-recognition-models.pdf
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Afterward
▶ Adapted from Jeff Hawkins, Founder of Palm Computing.

The key to object recognition is representation.

▶ Convolutional neural networks are particularly well-suited for
computer vision tasks

▶ Convolutional layers “mimic” processing in visual cortex
▶ Exploits spatial relationship between neighbouring pixels
▶ Learns powerful representations that reduce the semantic gap
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Practical matters: where to go from here?
▶ Deep learning is as much about engineering as it is about

science
▶ Learn at least one of the many available deep learning

frameworks really well
▶ Become an efficient coder

▶ Don’t be afraid to use high-level deep learning tools to quickly
prototype baselines (e.g., huggingface)
▶ Deep learning projects share common features

▶ Data loaders
▶ Measuring performance, say accuracy, precision, etc.

https://github.com/huggingface
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