
3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 1/48

Local features
Faisal Qureshi

Professor

Faculty of Science

Ontario Tech University

Oshawa ON Canada

http://vclab.science.ontariotechu.ca

Copyright information

© Faisal Qureshi

License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Lesson Plan

Characteristics of a good local feature

Raw patches as local features

SIFT descriptor

Feature detection and matching in OpenCV

http://vclab.science.ontariotechu.ca/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 2/48

Blob detection

MSER in OpenCV

Applications of local features

Motivation

Consider image stitching. It requires that we find corresponding "locations" in two images. Given these corresponding

locations, we can compute homography, which would allow us to stitch the two images to construct a panorama.

Review: Characteristics of a Good Feature

Repeatability — feature is invariant to geometric, lighting, etc. changes

Saliency or distinctiveness

Compactness — efficiency, many fewer features than the number of pixels in the image

Locality — robustness to clutter and occlusion, a feature should only occupy a small area of an image

Repeatability

We need to find at least some of the same points in two images to any chance of finding true matches. There is little chance

that we can find corresponding locations given the following two images.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 3/48

Detection process run independently on two images should return at least some of the corresponding locations as seen

below.

Recall that we have attempted to address this issue by interest point detection. These are locations in the image that are

(somewhat) "invariant" to geometric and photometric changes. Specifically, we identified corner locations as those that are

covariant to translation and rotation and partially invariant to changes in intensity. Recall also that corner detection is not

invariant to changes in scale.

Observation 1: identify interest points locations (say, through corner detection) and construct local features around these

locations.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 4/48

Interest point detectors

Available interest point detectors

Hessian & Harris [Beaudet 78], [Harris 88]

Laplacian, Difference of Gaussian (DoG) [Lindeberg 98], [Lowe 99]

Harris-/Hessian-Laplace [Mikolajczyk & Schmid 01]

Harris-/Hessian-Affine [Mikolajczyk & Schmid 04]

Edge-based Region Detector (EBR) and (Intensity Extrema Based Region Detector) IBR [Tuytelaars & Van Gool 04]

Maximally Stable Extremal Regions (MSER) [Matas 02]

Salient Regions [Kadir & Brady 01]

and many others

Which interst point detector should you choose?

What do you want it for?

Precise localization in x-y: Harris

Good localization in scale: DoG

Flexible region shape: MSER

Best choice often application dependent

Harris-/Hessian-Laplace/DoG work well for many natural categories

MSER works well for buildings and printed things

Take home lesson

There have been extensive evaluations/comparisons [Mikolajczyk et al., IJCV 05, PAMI 05]. Best to check these out and

select the best interest point detector for your application.

It is sometimes useful to use multiple detectors simultaneously to help with matching over a range of image categories

We will soon see that deep learning has revolutionized image feature construction. More on this later.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 5/48

Saliency

We want to reliably determine which location in one image goes with which location in the second image. The computed

features should be invariant to geometric and photometric differences between the two images. Consider the following figure

Our task is to find the corresponding locations in the two images. This means that we need to figure out which of the two

locations in the image on the right matches with the location shown in the image on the left.

Observation 2: compute descriptors that encode the area surrounding an interest point. These descriptors should be

compact (for computational reasons), these should have local support, and these should have invariance properties with

respect to geometric and photometric changes.

? Why do we want to encode local region around an interest point. Why not encode the entire image?

Local feature descriptors

Encode area around interest points as vectors. We can then easily match these features to identify the corresponding

locations between the two images. The following figure illustrates this idea. Here, local area around three interest point

locations (one in the left image, and two in the right image) is encoded as -dimensional vectors.d



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 6/48

We can find the corresponding location by matching these -dimensional vectors. There are many options for doing so. E.g.,

we can uses sum-of-squared differences (SSD) to match these vectors. Alternately, we can use cosine similarity. And there

are many other techniques for matching vectors.

Computing local feature descriptors

Invariance to translation, rotation, and scale.

d



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 7/48

Invariance to changes in intensity and color.

(Figures courtesy T. Tuytelaars ECCV 2006 tutorial)

Raw patches as local descriptors



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 8/48

The simplest way to describe the neighborhood around an interest point is to write down the list of intensities to form a

feature vector.

Consider the figure below.

The image patch around the interest point locations (depicted by the red circles) are as seen below.

Lets write down the list of intensities in these patches to form the feature vector



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 9/48

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

left_patch = cv.imread('data/local-features-construction-2.jpg')
left_patch = cv.cvtColor(left_patch, cv.COLOR_BGR2RGB)
left_patch = cv.resize(left_patch, (32, 32), interpolation=cv.INTER_NEAREST)

right_patch = cv.imread('data/local-features-construction-1.jpg')
right_patch = cv.cvtColor(right_patch, cv.COLOR_BGR2RGB)
right_patch = cv.resize(right_patch, (32, 32), interpolation=cv.INTER_NEAREST)

plt.figure(figsize=(10,5))
plt.subplot(121)
plt.imshow(left_patch)
plt.subplot(122)
plt.imshow(right_patch);

In [1]:

In [2]:



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 10/48

Notice that listing intensities is very sensitiive to changes in rotation, scale, intensity, etc. These make poor feature

descriptors.

Shift Invariant Feature Transform (SIFT) [Lowe 2004]

Description taken from various places, including https://sbme-tutorials.github.io/2019/cv/notes/7_week7.html

SIFT Pyramid

Construct SIFT pyramid, which consists of Octaves and Scales. Octaves are different levels of image resolutions (pyramids

levels), and scales represent different scales of window in each octave level (different  of Gaussian window)σ

https://sbme-tutorials.github.io/2019/cv/notes/7_week7.html


3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 11/48

Key-point localization in scale

At each scale compare cornerness with neighbouring scales (upper and lower scales) and pick the scale with maximum

cornerness value. Not all corners in an image are localized at the same scale.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 12/48

Computing SIFT descriiptor

Use image gradients instead of raw intensities

Use histograms to bin pixels (gradients) within sub-patches according to their orientation.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 13/48

Use of image gradients provides partial invariance to changes in illumination

Using subpatches maintains spatial structure.

Achieving rotation invariance

Rotate patch according to its dominant gradient orientation. This puts the patches into a canonical orientation.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 14/48

(Image from Matthew Brown.)

See below for how to find the dominant gradient orientation.

Computing SIFT descriiptor

Use image gradients instead of raw intensities

Use histograms to bin pixels (gradients) within sub-patches according to their orientation.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 15/48

Use of image gradients provides partial invariance to changes in illumination

Using subpatches maintains spatial structure.

128-dimensional SIFT Descriptors

After localization of a key-point in our scale space. We can get its SIFT descriptor as follow

Extract a  window centered by this point.

Get gradient magnitude and multiply it by a  Gaussian window of 

Get gradient angle direction.

Adjusting orientation (To be rotation invariant): get the gradient angle of the window and Quantize them to 36 values

Locate dominant corner direction which is most probable angle (angle with max value in 36 bit angle histogram) subtract

dominant direction from gradient angle.

16 × 16

16 × 16 σ = 1.5

(0, 10, 20, ⋯ , 360)



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 16/48

For each block get magnitude weighted angle histogram and normalize it (divide by total gradient magnitudes). Here

angles are quantized to 8 angles [0, 45, 90, … , 360] based on its relevant gradient magnitude i.e (histogram of angle 0 =

sum(all magnitudes with angle 0)).



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 17/48

SIFT properties

Extraordinarily robust matching technique

Can handle changes in viewpoint of up to about 60 degree out of plane rotation

Can handle significant changes in illumination

(Image from Steve Seitz)

Fast and efficient—can run in real time



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 18/48

NASA Mars Rover images with SIFT feature matches. (Figure by Noah Snavely.)

SIFT summary

Invariant to scale and rotation

Partially invariant to illumination changes, camera viewpoint, occlusion, and clutter

SIFT Code

SIFT was initially included in OpenCV; however, it is no longer available. Since SIFT was patented. An option is to use VLfeat

library, which includes a SIFT implementation. VLfeat currently doesn't have a "stable" Python biding. Still you are welcome to

try it using pip install pyvlfeat .

Matching local features

https://www.vlfeat.org/
https://www.vlfeat.org/


3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 19/48

Consider the figures below. "SIFT patches" are overlaid on the two images. Our goal is to generate candidate matches.

Classical feature descriptors, such as SIFT, SURF, etc., are usually compared and matched using the Euclidean distance (or

L2-norm). Other techniques for matching these features are Cosine similarity, Earth Mover's Distance (also known as

Wasserstein Distance), etc.

Distance computation in Python

Check out scipy.spatial.distance  module for various methods for computing distance matrix for a collection of raw

observation vectors stored in a rectangular array.

See here for more information.

Exercise 1

Compute Cosine and Euclidean distance matrix between three vectors , , , and 

Solution:

[1, 0, 0] [0, 1, 0] [1, 1, 0] [10, −2, 1]

https://docs.scipy.org/doc/scipy/reference/spatial.distance.html#module-scipy.spatial.distance


3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 20/48

# %load solutions/local-features/solution-01.py
# Local features - Exercise 01

from scipy.spatial import distance
import numpy as np

a = np.array([1,0,0])
b = np.array([0,1,0])
c = np.array([1,1,0])
d = np.array([10,-2,1])

# Set up an m-by-n matrix, where m is the number of
# data items and n is the dimension
X = np.vstack((a,b,c,d))
#print(f'Shape of X is {X.shape}')

# D is condensed matrix
metric = ['cosine', 'euclidean']
i = 0
D = distance.pdist(X, metric[i])

# Lets convert it into square form
print(f'{metric[i]} similarity:')
print(distance.squareform(D))

cosine similarity:
[[0.         1.         0.29289322 0.02409993]
[1.         0.         0.29289322 1.19518001]
[0.29289322 0.29289322 0.         0.44794755]
[0.02409993 1.19518001 0.44794755 0.        ]]

From distance to similarity

How do we convert distance values to similarity values. For cosine distance, simply subtract cosine distance from 1.0. In

general if your distance metric returns values between 0 and 1, then you can use this trick.

Exercise 2

In [3]:



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 21/48

Compute Cosine similarity matrix between , , , and 

Solution:

# %load solutions/local-features/solution-02.py
# Local features - Exercise 02

from scipy.spatial import distance
import numpy as np

a = np.array([1,0,0])
b = np.array([0,1,0])
c = np.array([1,1,0])
d = np.array([10,-2,1])

# Set up an m-by-n matrix, where m is the number of
# data items and n is the dimension
X = np.vstack((a,b,c,d))
#print(f'Shape of X is {X.shape}')

# D is condensed matrix
metric = ['cosine', 'euclidean']
i = 0
D = distance.pdist(X, metric[i])

# Lets convert it into square form
print(f'{metric[i]} similarity:')
print(1.0 - distance.squareform(D))

cosine similarity:
[[ 1.          0.          0.70710678  0.97590007]
[ 0.          1.          0.70710678 -0.19518001]
[ 0.70710678  0.70710678  1.          0.55205245]
[ 0.97590007 -0.19518001  0.55205245  1.        ]]

Gaussian kernel to convert distance to similarity

For other distances, we can use, say, a Gaussian kernel as follows:

[1, 0, 0] [0, 1, 0] [1, 1, 0] [10, −2, 1]

In [4]:



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 22/48

where  is the distance between two vectors  and .  is a tuning (or scaling) parameter. If  is high,  will be close to

 (i.e., high similarity) for large values of . If  is small, even a small  will reduce the similarity scores for the two vectors.

Exercise 3

Compute similarity matrix between , , , and . Assume Euclidean distance metric.

Solution:

# %load solutions/local-features/solution-03.py
# Local features - Solution 03

from scipy.spatial import distance
import numpy as np

a = np.array([1,0,0])
b = np.array([0,1,0])
c = np.array([1,1,0])
d = np.array([10,-2,1])

# Set up an m-by-n matrix, where m is the number of
# data items and n is the dimension
X = np.vstack((a,b,c,d))
#print(f'Shape of X is {X.shape}')

# D is condensed matrix
metric = ['cosine', 'euclidean']
i = 1
D = distance.squareform(distance.pdist(X, metric[i]))
print('Distance:\n', D)

# Lets convert it into square form
sigma = 0.0001
scaling = 2 * (sigma ** 2)

K(d) = exp( ),
d2

2σ2

d x1 x2 σ σ K(d)

1 d σ d

[1, 0, 0] [0, 1, 0] [1, 1, 0] [10, −2, 1]

In [5]:



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 23/48

print(f'{metric[i]} similarity:')
np.set_printoptions(formatter={'float': lambda x: "{0:0.1e}".format(x)})
S = np.exp(-D**2 / (scaling))
print('Similarity:\n', S)
np.set_printoptions() # To not mess with other printing

Distance:
[[ 0.          1.41421356  1.          9.2736185 ]
[ 1.41421356  0.          1.         10.48808848]
[ 1.          1.          0.          9.53939201]
[ 9.2736185  10.48808848  9.53939201  0.        ]]

euclidean similarity:
Similarity:
[[1.0e+00 0.0e+00 0.0e+00 0.0e+00]
[0.0e+00 1.0e+00 0.0e+00 0.0e+00]
[0.0e+00 0.0e+00 1.0e+00 0.0e+00]
[0.0e+00 0.0e+00 0.0e+00 1.0e+00]]

Wasserstein distance

Wasserstien distance is computed between two probability distributions (below represented as histograms). Check out

scipy.stats  module for methods for computing Wasserstien distance.

from scipy.stats import wasserstein_distance
wasserstein_distance([0, 1, 3], [5, 6, 8])

5.0

Hamming distance

We now also have binary feature descritors, such as ORB, BRISK, which are matched using Hamming distance.

Aside:

In [6]:

Out[6]:

dhamming(a, b) =
n−1

∑
i=0

(ai ⊕ bi)



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 24/48

SIFT descriptors represent the histogram of oriented gradient in a neighbourhood

SURF descriptors represent the histogram of of the Haar wavelet response in a neighborhood

See here) for more information about Binary Robust Independent Elementary Features (BRIEF)

Oriented Fast and Rotated Brief (ORB) [Ethan Rublee et al. 2011]

Bruteforce matching

Compare them all, take the closest (or closest , or within a thresholded distance).

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img1 = cv.imread('data/box.png',cv.IMREAD_GRAYSCALE)          
img2 = cv.imread('data/box_in_scene.png',cv.IMREAD_GRAYSCALE) 
print(img1.shape)

(223, 324)

orb = cv.ORB_create()
kp1, des1 = orb.detectAndCompute(img1, None) # locations and descriptor
kp2, des2 = orb.detectAndCompute(img2, None)

bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1, des2)
matches = sorted(matches, key = lambda x:x.distance)

img3 = cv.drawMatches(img1, kp1, img2, kp2, matches[:10], None, flags=cv.DrawMatchesFlags_NOT_DRAW_SINGLE_P

plt.figure(figsize=(10,10))
plt.imshow(img3)
plt.show()

k

In [7]:

In [8]:

In [9]:

In [10]:

https://medium.com/data-breach/introduction-to-brief-binary-robust-independent-elementary-features-436f4a31a0e6


3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 25/48

KDTree data structure

See here for more information.

Solution:

# %load solutions/local-features/kdtree.py
# Local Features - kdtree.py

import numpy as np
from scipy.spatial import KDTree

rng = np.random.RandomState(0)
X = rng.random_sample((10, 3))
print(X)

In [11]:

https://en.wikibooks.org/wiki/Data_Structures


3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 26/48

T = KDTree(X, leafsize=3)
distance, index = T.query(X[0,:]) # Try to perturb the query vector +[0.01,0.01,0]
print(f'distance={distance}, data={X[index,:]}')

[[0.5488135  0.71518937 0.60276338]
[0.54488318 0.4236548  0.64589411]
[0.43758721 0.891773   0.96366276]
[0.38344152 0.79172504 0.52889492]
[0.56804456 0.92559664 0.07103606]
[0.0871293  0.0202184  0.83261985]
[0.77815675 0.87001215 0.97861834]
[0.79915856 0.46147936 0.78052918]
[0.11827443 0.63992102 0.14335329]
[0.94466892 0.52184832 0.41466194]]

distance=0.0, data=[0.5488135  0.71518937 0.60276338]

Ambiquous matches

Lets consider SSD metric for finding matches. How do we threshold on SSD? One approach is to compute the ratio of the

distance to best match to distance to the second best match. If this ratio is low, the best match is a good candidate. If this

ratio is high, then the best match could be an ambiguous match.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 27/48

(Figure from Lowe 2004)

FLANN matching

Check this for more information.

(From OpenCV documentation) FLANN stands for Fast Library for Approximate Nearest Neighbors. It contains a collection of

algorithms, such as KDTree, Locality Sensitive Hashing, etc., optimized for fast nearest neighbor search in large datasets and

https://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_pami2014.pdf
https://www.mit.edu/~andoni/LSH/


3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 28/48

for high dimensional features. It works more faster than BFMatcher for large datasets.

For OpenCV implementation, possible values are:

FLANN_INDEX_LINEAR = 0
FLANN_INDEX_KDTREE = 1
FLANN_INDEX_KMEANS = 2
FLANN_INDEX_COMPOSITE = 3
FLANN_INDEX_KDTREE_SINGLE = 4
FLANN_INDEX_HIERARCHICAL = 5
FLANN_INDEX_LSH = 6
FLANN_INDEX_SAVED = 254
FLANN_INDEX_AUTOTUNED = 255

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img1 = cv.imread('data/box.png',cv.IMREAD_GRAYSCALE)          
img2 = cv.imread('data/box_in_scene.png',cv.IMREAD_GRAYSCALE) 

orb = cv.ORB_create()
kp1, des1 = orb.detectAndCompute(img1, None) # locations and descriptor
kp2, des2 = orb.detectAndCompute(img2, None)

FLANN_INDEX_LSH = 6
index_params = dict(algorithm = FLANN_INDEX_LSH, table_number = 6)
search_params = dict(checks=50)
flann = cv.FlannBasedMatcher(index_params, search_params)

matches = flann.knnMatch(des1, des2, k=2)

good = []
for match in matches:
    if len(match) < 2: continue
    m, n = match[0], match[1]

In [12]:

In [13]:

In [14]:

In [15]:

In [16]:



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 29/48

    if m.distance < 0.75*n.distance:
        good.append([m])

img3 = cv.drawMatchesKnn(img1, kp1, img2, kp2, good, None, flags=cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS
plt.figure(figsize=(10,10))
plt.imshow(img3)
plt.show()

Blob detection

Edge detection review

In [17]:



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 30/48

(Figure from Steve Seitz).

Second derivative of Gaussian (Laplacian)



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 31/48

(Figure from Steve Seitz).

From edges to blobs



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 32/48

(Figure from Lana Lazebnik).

Edge = ripple

Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the

scale of the Laplacian is "matched" to the scale of the blob

Blob detection in 2D

Laplacian of Gaussian is circularly symmetric operator for blob detection in 2D.

∇2g = +
∂2g

∂x2

∂2g

∂y2



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 33/48

(Figure from Lana Lazebnik).

Characteristic scale

We define the characteristic scale as the scale that produces peak of Laplacian response.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 34/48

(Figure from Lana Lazebnik).



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 35/48



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 36/48



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 37/48



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 38/48



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 39/48



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 40/48



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 41/48

Difference of Gaussian

We can approximate Laplacian as Difference of Gaussian (DOG), which much more efficient to compute.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 42/48

Blob detection example in OpenCV

The relevant parameters are described below:

Area: filter the blobs based on size

Circularity: a measure of how close the blob is to a circle. Circularity is defined by .

Convexity: the ratio of area of the blob and the are of its convex hull. Convexity values lie between  and , inclusive.

Inertia: the measure of "ellipseness" of a shape. A circle has inertia of  and a line has inertia of . The inertia of an ellipse

lies somewhere between  and .

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

filename = "data/butterfly.jpg"
#filename = "data/BlobTest.jpg"

4π area
parameter

0 1

1 0

0 1

In [18]:



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 43/48

im = cv.imread(filename)
im = cv.cvtColor(im, cv.COLOR_BGR2RGB)

params = cv.SimpleBlobDetector_Params()
params.minThreshold = 10 # Change thresholds
params.maxThreshold = 250
params.filterByArea = False # Filter by Area.
params.minArea = 100
params.filterByCircularity = False # Filter by Circularity
params.minCircularity = 0.1
params.filterByConvexity = False # Filter by Convexity
params.minConvexity = 0.9
params.filterByInertia = False # Filter by Inertia
params.minInertiaRatio = 0.9
detector = cv.SimpleBlobDetector_create(params)

keypoints = detector.detect(im)

im_with_keypoints = cv.drawKeypoints(im, keypoints, np.array([]), (255,0,0), cv.DRAW_MATCHES_FLAGS_DRAW_RIC

plt.figure(figsize=(15,15))
plt.imshow(im_with_keypoints);

In [19]:

In [20]:

In [21]:



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 44/48

Maximally Stable Extremal Region (MSER)

MSER detects homogeneous regions. We can use the centroids of these regions as keypoint locations.



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 45/48

MSER are affine invariant, which means that image skew or warping doesn't effect these. In addition, MSER are also "partially"

invariant to changes in image intensity. In addition, MSER have the followign useful properties:

Multi-scale detection without any smoothing involved, both fine and large structure is detected

Only regions whose support is nearly the same over a range of thresholds is selected, which leads to stability

The set of all extremal regions can be enumerated in worst-case , where  is the number of pixels in the image.

Covariance to adjacency preserving (continuous) transformation 

For more information, check this wiki article.

MSER in OpenCV

#im = cv.imread('data/apple.jpg');
im = cv.imread('data/box.png');
im = cv.cvtColor(im, cv.COLOR_BGR2RGB)
vis = im.copy()

mser = cv.MSER_create()
regions, bboxes = mser.detectRegions(im)

hulls = [cv.convexHull(p.reshape(-1, 1, 2)) for p in regions]
cv.polylines(vis, hulls, 1, (255, 0, 255), 1)
plt.figure(figsize=(10,10))
plt.imshow(vis);

O(n) n

T : D → D

In [22]:

In [23]:

In [24]:

https://en.wikipedia.org/wiki/Maximally_stable_extremal_regions


3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 46/48

Applications of local invariant features

Wide baseline stereo

Motion tracking

Panoramas



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 47/48

Mobile robot navigation

3D reconstruction

Recognition

Panoramas

(Figure from UBC autostich)

Wide base-line stereo



3/6/24, 9:28 AM 11-local-features

csundergrad.science.uoit.ca/courses/cv-notes/notebooks/11-local-features.html 48/48

(Image from T. Tuytelaars ECCV 2006 tutorial)

Object recogniton

(Figure from Kristen Grauman)

 In [ ]:


