Jan 31, 2024
Today's lecture:
- Model fitting in the presence of outliers
- RANSAC
Lets fit a linear model
$$y=ma+b$$
 to the sate.
Pick two phis at random.
Fit a line through line opts
Q. How well does the line
represent
atte doar?
- Count data points
within emae
difference of
the line.
Respect.
Pick the best performing model
Fitting a 20 line to points (π, y_i) and (π_2, y_i)
 $\frac{1-Y_1}{Y_2-Y_1} = \frac{\chi-\chi_1}{\chi_2-\chi_1}$ \longrightarrow $y = m_2 + c$
Detours: Fit the following quodratic model $a\chi^2 + b\chi + c = y$
to data points (π, y_i) , where $i \in [1, m]$.
(D. Si this a linear model?
(Can 9 express it as $A\chi = b$ on $A\chi = 5$?

3) can 9 rue RANSAC 50 fit this model? "Any model" can be filled using RANSAC.

RANSAC

- Determine

- S: the smallest number of points required for fitting
- N : the number of ilevations
- d: Maeshold to decide whether or not a data points fits the model
- T: the number of nearby points required to assert that the model fits well
- Until N iterations have occured
 - Draw a sample of & points uniformly and independently
 - Fit model to the set of a points least squares Total least squares
 - Por each date point outside être sets - Test the distance and if it is less than d
 - then this is a good point
 - If there are T or more good points _ <u>Refit the model</u> verig these T points
- Use the best fit using fit error as the criteria.
- Q. How many iterationic N are needed for success probability equal to p

Probability of sampling an onther : e samples required for filting our model : S Probability of selecting an inher : 1-e

Probability of relating s interes in a remo:
$$(1-e)^{5}$$

Probability of a bad sample
 $(1:e., one of the s points are
anthin): $1-(1-e)^{5}$
Probability of getting N bad samples:
 $[1-(1-e)^{5}]^{N}$
Probability of getting at least one good sample in
N tries: $1-[1-(1-e)^{5}]^{A}$
let $p=1-[1-(1-e)^{5}]^{N}$ \ddagger iterations
 $prob.$ of tweens Dutter probability
 $p=1-[1-(1-e)^{5}]^{N} = 1-p$
 $\Rightarrow log [1-(1-e)^{5}]^{N} = log (1-p)$
 $\Rightarrow N big [1-(1-e)^{5}] = log [1-(1-e)^{5}]$$

- 3D scene analysis Calibration

 - Fundamental matrix