Linear Algebra Basics
Scalars: \quad age $=4$
Vectors : $\left[\begin{array}{l}2 \\ 3 \\ 4 \\ 1\end{array}\right] ん$ column vector $\left.\quad \int_{2}^{2} 304061\right]$

$$
\vec{x}=\left[\begin{array}{l}
2 \\
3 \\
4 \\
1
\end{array}\right] \quad \vec{x}^{\top}=\left[\begin{array}{llll}
2 & 3 & 4 & 1
\end{array}\right]
$$

21 Examples:

$$
\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\left[\begin{array}{l}
y_{\sqrt{2}} \\
y / \sqrt{2}
\end{array}\right]
$$

Q. How close (or similar) are two vectors?

$$
\begin{aligned}
& \vec{a}-\vec{c}=\left[\begin{array}{l}
3-2 \\
3-4
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad|\vec{a}-\vec{c}|=R \\
& \vec{a}-\vec{b}=\left[\begin{array}{l}
3+1 \\
3-5
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2
\end{array}\right] \quad|\vec{a}-\vec{b}|=R
\end{aligned}
$$

Angle between the two vectors:

$$
\vec{a} \cdot \stackrel{\rightharpoonup}{b}=|a||b| \cos \theta
$$

$$
x=h \cos \theta
$$

Ass: $\quad \vec{a} \cdot \vec{b}=\sum_{i=1}^{N} a_{i} b_{i}$

$$
=\vec{a}^{\top} \vec{b}
$$

$$
\vec{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{N}
\end{array}\right] \quad \vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{N}
\end{array}\right]
$$

$$
=\left[\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & \cdots & a_{N}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{N}
\end{array}\right]
$$

Duter-products:

$$
\begin{gathered}
\vec{a} \vec{b}^{\top}=A \\
(N \times 1)(1 \times N)(N \times N)
\end{gathered}
$$

Matrices

Aside: $\quad \vec{y}=A \vec{x} \quad \rightarrow \rightarrow|A \vec{x}|$
brayscale

8-bits: 256 levels
[0,255]
Black white
$\underset{\sim}{ }$ convert it into floats

$$
[0.0,1.0]
$$

Color images

$$
\begin{aligned}
& 8 \text {-bit , RGB } \\
& 4096 \times 1024
\end{aligned}
$$

Cross - correlation

Pilter
Exaunde: 1

$$
\begin{aligned}
& I=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & -1 & 3 & 0 & 5 & 1 & 4 \\
\hline 6 & & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array} \\
& f=\begin{array}{|l|l|l|}
\hline 1 & 1 & 2 \\
\hline
\end{array} \\
& \operatorname{cc}(I, f)=\begin{array}{|l|l|l|l|l|l|}
\hline & & 2 & & & \\
\hline & & 2 & 3 & 5 & 6 \\
\hline
\end{array} \\
& \text { (1) }(-1)+(3)(1)+(0)(2) \\
& =2
\end{aligned}
$$

for $i=1$ to 5

$$
\begin{aligned}
& O[i]=I[i-1] \times f[0]+I[i] \times f[1]+I[i+1] \times f[2] \\
& \uparrow \\
& \text { output }
\end{aligned}
$$

Filters/kervel:

$$
\begin{aligned}
& \text { Half-widh }=\omega \\
& C C(I, f)_{i}=\sum_{j=-\infty}^{+\infty} I[i-j] f[j]
\end{aligned}
$$

1. Dilation

