Spatial Processes – Part 3

Computational Photography (CSCI 3240U)

Faisal Z. Qureshi http://vclab.science.ontariotechu.ca

OntarioTech

Special thanks to Ioannis Gkioulekas

• Many of the slides are taken with his permission from the computational photography course that he has developed at CMU

2

Image Enhancement

- Make an image more suitable for a particular application than the original image
- Types of techniques
 - Point processing
 - Spatial processing (pixel neighbourhoods)
 Today's Focus
 - Frequency domain processing

Spatial Filtering

- Two main types
 - Linear filtering
 - Non-linear filtering
- Linear filters
 - Remove, isolate, modify frequencies in the image
 - Foundation based upon the convolution theorem
- Non-linear filters
 - Based upon image statistics

1	3	5	0	1	1		
2	1	-1	3	0	4		
0	1	2	2	3	4		
1	3	4	9	10	3	*	
3	7	8	2	1	4		
1	5	6	4	2	1		

< _____

=

Kernel

12

Linear Filtering in 2D

Cross-correlation

$$CC(i, j) = \sum_{\substack{k \in [-w,w]\\l \in [-h,h]}} \mathbf{f}(i+k, j+l)\mathbf{h}(k, l)$$

1	3	5	0	1	1
2	1	-1	3	0	4
0	N.	2	2	Ĩ	4
1	3	4	9	10	3
3	7	ô	2		4
1	5	6	4	2	1

Convolution

$$(\mathbf{f} * \mathbf{k})_{i,j} == \sum_{\substack{k \in [-w,w] \\ l \in [-h,h]}} \mathbf{f}(i-k,j-l)\mathbf{h}(k,l)$$

		1	-		
1	3	5	0	1	1
2	1	-1	3	-0	4
0	l	2	2		4
1	3	4	9	10	3
3	7	8	2	▶1	4
1	5	6	4	2	1

Linear Filtering in 2D: Number of multiplications and additions

#locations = (4)(4)

At each location: #multiplications = (3)(3) #additions = (3)(3)-1

Total = 16 x (9 MUL + 8 ADD)

Multivariate Guassian (in k-dimensions)

$$G(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^k \det(\boldsymbol{\Sigma})}} exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$$

where

 $x \in R^{k}$ $\mu \in R^{k}$ $\Sigma \in R^{k \times k}$

Gaussian in 2D

• We often use the following approximation of a Gaussian function

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

• Gaussian functions have infinite support, but discrete Gaussian kernels are finite

• Variance controls how broad or peaky the filter is

- Removes high-frequency components from the image
 - Blurs the image
 - Acts as a low-pass filter

- Convolving twice with Gaussian kernel of width σ^2 is the same as convolving once with kernel of width $\sigma\sqrt{2}$
- Applying a Gaussian filter with variance σ_1^2 , followed by applying a Gaussian filter with variance σ_2^2 is the same as applying once with Gaussian filter with variance $\sqrt{\sigma_1^2 + \sigma_2^2}$
- All values are positive
- Values sum to 1?
 - Why is this relevant?
- This size of the filter, plus its variance, determines the extent of smoothing

Gaussian Blurring vs. Average (Box) Filtering

Gaussian Kernel

Averaging (Box) Kernel

Gaussian Blurring vs. Average (Box) Filtering

Gaussian Kernel

MIDTERM

Separability

• An n-dimensional filter that can be expressed as an outer-product of n 1dimensional filters is called a separable filter

Outer-Product and Inner-Product

$a^{\tau} = [1,2] \text{ and } b^{\tau} = [1,0]$, Duter-product
Inner-product.	$ab^{T} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ (2)(1) & (1)(1) \\ (2)(1) & (2)(0) \end{bmatrix}$
$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (1)(1) + (2)(0) = 1$	$\in \mathbb{R}^{2\times 1} \in \mathbb{R}^{2\times 2} \in \mathbb{R}^{2\times 2}$
eR eR populit	$=\begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$
$a^{T}b = 1$ Dot-Xn	5
$a = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	3

Outer-Product and Inner-Product $a^{\mathsf{T}} = [1,2,1] \text{ and } b^{\mathsf{T}} = [1,1,3]$ $a^{T}b = [1 2 1] [1] = (1)(1) + (2)(1) + (1)(3) = 1 + 2 + 3 = 6$ LP CR $ab^{T} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} (1)(1) & (1)(1) & (1)(3) \\ (2)(1) & (2)(1) & (1)(3) \\ (1)(1) & (1)(3) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 2 & 6 \\ 1 & 1 & 3 \end{bmatrix}$ 373 EP eR eR eR

Separability

• An n-dimensional filter that can be expressed as an outer-product of n 1dimensional filters is called a separable filter

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Convolution with Separable Filters in 2D

- [Step 1] Perform row-wise convolution with horizontal filter
- [Step 2] Perform column-wise convolution the results obtained in step 1 with vertical filter

Convolution with Separable Filters in 2D

output of horizontal convolution

Convolution with Separable Filters in 2 d

Filter/Kernel
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

(1)(1) + (0)(2) + (-2)(1) + (2)(2) + (-1)(4) + (6)(2) + (3)(1) + (0)(2) + (1)(1)

= X-2+12+3+X

S

$$(1)(1) + (2)(0) + (1)(-2) = 1 - 2 = -$$

$$(1)(2) + (2)(1) + (6)(1) = 6$$

(3)
$$(1)(3) + (2)(0) + (1)(1) = 4$$

Computational Considerations

- For non-separable filters $O(w_k \times h_k \times w \times h)$
- For separable filters

 $0(w_k \times w \times h) + 0(w_h \times w \times h)$

60 × 1000 × 1000

60× 1000×1000

Signal	[1 2 3	$0 \\ -1 \\ 0$	-2 6 1	2 1 3			
Filter/K	ernel	$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$	2 4 2	$\begin{bmatrix} 1\\2\\1 \end{bmatrix} =$	$\begin{bmatrix} 1\\2\\1\end{bmatrix} \begin{bmatrix} 1\\1\end{bmatrix}$	2	3]

Computational Considerations

• For non-separable filters $O(w_k \times h_k \times w \times h)$

For separable filters

 $0(w_k \times w \times h) + 0(w_h \times w \times h)$

Signal $\begin{bmatrix} 1 & 0 & -2 & 2 \\ 2 & -1 & 6 & 1 \\ 3 & 0 & 1 & 3 \end{bmatrix}$ Filter/Kernel $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

Where possible exploit separability to speed up convolutions

Gaussian filter is separable

$G_{\sigma}(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$ $= \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \cdot \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right)$ $= g_{\sigma}(x) \cdot g_{\sigma}(y)$	FIGURE 24-7 Separation of the Gaussian. The Gaussian is the only PSF that is circularly symmetric and separable. This makes it a common filter kernel in image processing.		20 15 10 0 0 0.04	horz[c]	11 3.5	6 8.20) 13.5	16.0	13.5	8.20	3.56	1.11 (0.25 (0.04
		0.04	0	0 0	0 0	0	1	1	1	0	0	0	0	0
\uparrow	իդերերերեր	0.25	0	0 0) 1	2	3	4	3	2	1	0	0	0
		1.11	0	0 1	1 4	9	15	18	15	9	4	1	0	0
Take home exercise		3.56	0	1 4	4 13	29	48	57	48	29	13	4	1	0
in the matchos		8.20	0	2 5	9 29	67	111	131	111	67	29	9	2	0
confirm that the monor		13.5	1	3 1	5 48	111	183	216	183	111	48	15	3	1
Conference in the ball	wan.	16.0	1	4 1	8 57	131	216	255	216	131	57	18	4	1
dal al multivariale	· · · · · · · · · · · · · · · · · · ·	13.5	1	3 1	5 48	111	183	216	183	111	48	15	3	1
our app. of many in		8.20	0	2 5	9 29	67	111	131	111	67	29	9	2	0
The Colortist and C		3.56	0	1 4	4 13	29	48	57	48	29	13	4	1	0
The Scientist and E		1.11	0	0 1	1 4	9	15	18	15	9	4	1	0	0
Digital Signal Proce	ssing	0.25	0	0 0	0 1	2	3	4	3	2	1	0	0	0

By Steven W. Smith, Ph.D.

0.04

0 0 0

0 0

1 1

How to find if a 2D filter is separable?

- Use Singular Value Decomposition (SVD)
 - If only one singular value is non-zero then the 2D filter is separable
- [Step 1] Compute SVD and check if only one singular value is non-zero

$$\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}} = \sum_{i} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathrm{T}}$$
where $\mathbf{\Sigma} = \operatorname{diag}(\sigma_{i})$

$$\mathbf{F} = \underbrace{\mathbf{u}_{i}}_{\mathcal{U}} \underbrace{\mathbf{\Sigma}}_{\mathcal{U}} \underbrace{\mathbf{v}_{i}^{\mathrm{T}}}_{\mathcal{V}_{i}}$$

$$= \mathbf{c}_{i} \underbrace{\mathbf{u}_{i} \mathbf{v}_{i}^{\mathrm{T}}}_{\mathcal{V}_{i}} + \underbrace{\mathbf{c}}_{\mathbf{z}} \underbrace{\mathbf{u}_{2} \mathbf{v}_{k}}_{\mathcal{U}_{i}} + \cdots + \underbrace{\mathbf{v}}_{\mathbf{z}} \underbrace{\mathbf{u}_{k} \mathbf{v}_{k}}_{\mathcal{U}_{k}}$$

How to find if a 2D filter is separable?

- Use Singular Value Decomposition (SVD)
 - If only one singular value is non-zero then the 2D filter is separable
- [Step 1] Compute SVD and check if only one singular value is non-zero

$$\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}} = \sum_{i} \sigma_{i} \, \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\mathrm{T}}$$

where $\Sigma = \text{diag}(\sigma_i)$

• [Step 2] Vertical and horizontal filters are: $\sqrt{\sigma_1} u_1$ and $\sqrt{\sigma_1} v_1^T$

	?	?	?	
1	2	1	4	5
1	3	90	4	5
30	1	1	3	1
30 1	1 2	1 3	3 1	1 4

	0	0	0	
1	2	1	4	5
1	3	90	4	5
30	1	1	3	1
1	2	3	1	4
1	3	2	60	1

Set missing value to a particular value, say 0

	?	?	?	
1	2	1	4	5
1	3	90	4	5
30	1	1	3	1
30 1	1 2	1 3	3 1	1 4

	2	1	4	
1	2	1	4	5
1	3	90	4	5
30	1	1	3	1
1	2	3	1	4
1	3	2	60	1

Repeat boundary entries

	?	?	?	
1	2	1	4	5
1	3	90	4	5
30	1	1	3	1
				•
1	2	3	1	4

	3	2	60	
1	2	1	4	5
1	3	90	4	5
30	1	1	3	1
1	2	3	1	4
1	3	2	60	1

Wrap around. Useful to create an infinite domain.

	?	?	?					
1	2	1	4	5	1	2	1	4
1	3	90	4	5	1	3	90	4
30	1	1	3	1	30	1	1	3
1	2	3	1	4	1	2	3	1
1	3	2	60	1	1	3	2	60

Do nothing. Not a good choice, since the output size isn't the same as the input image, creating a host of engineering problems

Linear Filtering Properties

• Linearity

 $filter(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 filter(f_1) + \alpha_2 filter(f_2)$

• Shift-invariance

filter(shift(f)) = shift(filter(f))

• Any linear, shift-invariant filter can be represented as a convolution.

Properties of convolution

- Commulative: a * b = b * a
- Associative: a * (b * c) = (a * b) * c
- Distributes over addition: a * (b + c) = a * b + a * c
- Scalars factors out: ka * b = a * kb = k(a * b)
- Identity: a * e = a, where e is unit impulse

Summary

- Linear filtering
- Separable filters
- Dealing with missing values
- Linearity and shift-invariance
- Properties of convolution

Check out Linear Filtering notes <u>here</u>.