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Special thanks to Ioannis Gkioulekas

• Many of the slides are taken with his permission from the computational 
photography course that he has developed at CMU
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Image Enhancement

• Make an image more suitable for a particular application than the original 
image
• Types of techniques
• Point processing
• Spatial processing (pixel neighbourhoods)
• Frequency domain processing
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Today’s Focus



Spatial Filtering

• Two main types
• Linear filtering
• Non-linear filtering

• Linear filters
• Remove, isolate, modify frequencies in the image
• Foundation based upon the  convolution theorem

• Non-linear filters
• Based upon image statistics
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Linear Filtering in 1D
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Linear Filtering in 2D
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Linear Filtering in 2D
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Linear Filtering in 2D
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Linear Filtering in 2D
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Linear Filtering in 2D
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Linear Filtering in 2D
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Linear Filtering in 2D
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Linear Filtering in 2D: 
Number of multiplications and additions
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Total = 16 x (9 MUL + 8 ADD)
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Multivariate Guassian (in k-dimensions)
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Gaussian Blurring
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Gaussian Blurring

• We often use the following approximation of a Gaussian function

• Gaussian functions have infinite support, but discrete Gaussian kernels are 
finite
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Gaussian Blurring

• Variance controls how broad or peaky the filter is

• Removes high-frequency components from the image
• Blurs the image
• Acts as a low-pass filter
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Gaussian Blurring

• Convolving twice with Gaussian kernel of width %) is the same as 
convolving once with kernel of width % 2
• Applying a Gaussian filter with variance %*), followed by applying a 

Gaussian filter with variance %)) is the same as applying once with 
Gaussian filter with variance %*) + %))
• All values are positive
• Values sum to 1? 
• Why is this relevant?

• This size of the filter, plus its variance, determines the extent of 
smoothing
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Gaussian Blurring vs. Average (Box) Filtering
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Gaussian Blurring vs. Average (Box) Filtering
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Which one is better?

MIDTERM I



Separability

• An n-dimensional filter that can be expressed as an outer-product of n 1-
dimensional filters is called a separable filter
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Outer-Product and Inner-Product

(	 = 	 [1,2] and -	 = 	 [1,0] 
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Outer-Product and Inner-Product

(	 = 	 [1,2,1] and -	 = 	 [1,1,3] 

Faisal Qureshi - CSCI 3240U 24



Separability

• An n-dimensional filter that can be expressed as an outer-product of n 1-
dimensional filters is called a separable filter
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Convolution with Separable Filters in 2D

• [Step 1] Perform row-wise convolution with horizontal filter
• [Step 2] Perform column-wise convolution the results obtained in step 1 

with vertical filter
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Convolution 
with 
Separable 
Filters 
in 2D
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Convolution with Separable Filters in 2 d
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Computational Considerations
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• For non-separable filters

• For separable filters
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Computational Considerations
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• For non-separable filters

• For separable filters
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Where possible exploit separability to 
speed up convolutions



Gaussian filter is separable

Faisal Qureshi - CSCI 3240U 31

The Scientist and Engineer's Guide to

Digital Signal Processing

By Steven W. Smith, Ph.D.



How to find if a 2D filter is separable?

• Use Singular Value Decomposition (SVD)
• If only one singular value is non-zero then the 2D filter is separable

• [Step 1] Compute SVD and check if only one singular value is non-zero
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How to find if a 2D filter is separable?

• Use Singular Value Decomposition (SVD)
• If only one singular value is non-zero then the 2D filter is separable

• [Step 1] Compute SVD and check if only one singular value is non-zero

• [Step 2] Vertical and horizontal filters are:
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How to deal with missing (boundary values)
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Set missing value to a particular value, say 0



How to deal with missing (boundary values)
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Repeat boundary entries



How to deal with missing (boundary values)
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Wrap around.  Useful to create an infinite domain.



How to deal with missing (boundary values)
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Do nothing.  Not a good choice, since the output size isn’t the same as the input image, creating a host of 

engineering problems



Linear Filtering Properties

• Linearity

• Shift-invariance

• Any linear, shift-invariant filter can be represented as a convolution.
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Properties of convolution
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Summary

• Linear filtering
• Separable filters
• Dealing with missing values
• Linearity and shift-invariance
• Properties of convolution

Check out Linear Filtering notes here.
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http://csundergrad.science.uoit.ca/courses/cv-notes/notebooks/03-linear-filtering.html

