Spatial Processes

Computational Photography (CSCI 3240U)

Faisal Z. Qureshi http://vclab.science.ontariotechu.ca

OntarioTech

Special thanks to Ioannis Gkioulekas

• Many of the slides are taken with his permission from the computational photography course that he has developed at CMU

2

Image Enhancement

- Make an image more suitable for a particular application than the original image
- Types of techniques
 - Point processing
 - Spatial processing
 - Frequency domain processing

E.g., Human perception

Image Enhancement

- Make an image more suitable for a particular application than the original image
- Types of techniques
 - Point processing
 - Spatial processing (pixel neighbourhoods)
 - Frequency domain processing

E.g., Human perception

Image Enhancement

- Make an image more suitable for a particular application than the original image
- Types of techniques
 - Point processing
 - Spatial processing (pixel neighbourhoods)
 Today's Focus
 - Frequency domain processing

Spatial Processing

- Input image: f(x, y)
- Output image: g(x, y)
- T is an operator on f or a set of f
 - T is defined over some neighbourhood N of (x, y)
 - T can operate over a set of images

Under what conditions a pixel at (x,y) may be different from its neighbors. () dbject edges Shoding Texture

Spatial Filtering

- Two main types
 - Linear filtering
 - Non-linear filtering
- Linear filters
 - Remove, isolate, modify frequencies in the image
 - Foundation based upon the convolution theorem
- Non-linear filters
 - Based upon image statistics

CNNS

An Example of Spatial Filtering

f(x,y)

g(x, y)5 x 5 neighbourhood

An Example of Spatial Filtering

f(x,y)

g(x, y)5 x 5 neighbourhood

Linear Filtering in 1D ት N: -1, 0, 1N: -2, -1, 0, 1, 2 1-1,1+0,1+1 Summing kernel. Kernel/Filler : Faisal Qureshi - CSCI 3240U

Linear Filtering in 1 d

- Signal: f
- Kernel (sometimes called mask or filter). h
- Half-width of kernel: $w \rightarrow 2\omega$

Size of the Kernel

Gaussian in 1D

From Wikipedia

Gaussian in 1D

Here μ and σ refer to the mean and standard deviation of this Gaussian.

Aside: Mean and Standard Deviation

Given *n* data points $\{x_1, x_2, \cdots, x_n\}$

$$G(x;\mu,\sigma^{2}) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

is Gaussian.
Find a
Gaussian that
Best describes
the data

$$\mu = \mathbf{E}[x] = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\sigma^{2} = \mathbf{E}[(x-\mu)^{2}] = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Linear Filtering in 2D

1	3	5	0	1	1
2	1	-1	3 -	0	4
0	1	[/2]	2	3	4
1	3	4	9	10	3
3	7	8	2	1	4
1	5	6	4	2	1

Image

Kernel

a

'Ch

a

10,

0

'a

Ya

Ya

Summary

- Linear filtering 1D
 - Cross-correlation
 - Convolution
- Gaussian filtering in 1D
- Linear filtering in 2D

Check out Linear Filtering notes <u>here</u>.