Polynomial Approximation
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Today’s lecture

* How to compute image derivatives by fitting polynomials to 1D image
patches?
* Taylor series expansion around a patch center
* Least square fitting of a system of linear equations



Image as a surface in 3D

Consider a gray-scale image I(x, y) then the height of the surface at (x, y) is
I(x,y). The surface passes through the 3D point (x, y,I(x,y)).
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Image rows (or columns) as 2D graphs
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Paths as curves in 2D
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Image rows (or columns) as 2D graphs

Polynomial approximation

Intensity
A Taylor series expansion of I(x) near the “patch” center 0
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Image rows (or columns) as 2D graphs

Polynomial approximation

Intensity _ _
A Taylor series expansion of I(x) near the “patch” center 0

2 3
1(x) = 1(0) + xI'(0) + 1"(0) + 1"'(0) + et —1<n) + Ry q(%)

————
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1(0) Nth order approximation i
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For a given x, approximation depends on (n + 1) constants
corresponding to the intensity derivative at the patch origin.



Polynomial approximation

Intensity
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Taylor series expansion of I(x) near the patch center 0

1 1 i 1
I(x) = 1(0) + xI'(0) + E"ZI”(O) + gx31r (0) + -+ ﬁxnl(”)(O)
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Polynomial approximation

Intensity
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Taylor series expansion of I(x) near the patch center 0 r

1 1 1
1(x) ~ 1(0) + xI'(0) + =x2I"(0) + =x31""(0) + -+ + Ex"l(")(O)
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aEmm—

Re-write in matrix form

.//
1 1
I(X)zll X Exz cx
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For notational simplicity, lets
refer the vector of intensity and
its derivatives as d
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Polynomial approximation

Taylor series expansion of I(x) near the patch center 0

: 1 1 1
Intensity 1(x) =~ 1(0) + xI'(0) + ExZI”(O) + gx31'”(0) 4o +Ex"1(n)(0)

Example
Show the 0t order approximation
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Polynomial approximation

Intensity

Taylor series expansion of I(x) near the patch center 0

1 1
I(x) = 1(0) + xI'(0) + E"ZI”(O) + gx31r”'(0) + ot Ex"l(")(O)

—

ot

Practice Question
Show the 15t and 2"d order approximations
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Compute derivatives at pixel O (i.e., the center of the pathc)

Fit a polynomial of degree n to
the patch intensities

Intensity
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Compute derivatives at pixel O (i.e., the center of the patch)

Fit a polynomial of degree n to
the patch intensities Fitting a polynomial of degree 2
Intensity Use second-order Taylor series expansion

4 I(x) =1(0) + xI'(0) + %le”(O)
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Compute derivatives at pixel O (i.e., the center of the patch)

Fit a polynomial of degree n to

the patch intensities Fitting a polynomial of degree 2
Intensity Use second-order Taylor series expansion
A

I(x) =1(0) + xI'(0) + %le”(O)

g 1

Unknowns

-x

pOY I
v

S

w
S

Faisal Qureshi - CSCI 3240U

14



Compute derivatives at pixel O (i.e., the center of the patch)

Fit a polynomial of degree n to
the patch intensities

Intensity
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For convenience, we refer to patch intensities
as I, where x € [1,2w + 1]. Then [, 44
refers to the intensity at patch center.

oY I
v

Fitting a polynomial of degree 2
Use second-order Taylor series expansion

I(x) =1(0) +xI'(0) + %le”(O)
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Compute derivatives at pixel O (i.e., the center of the patch)

Fit a polynomial of degree n to
the patch intensities

Intensity
A
\ 1(x)
|
l
% 0 chw >

Fitting a polynomial of degree n
Use nth order Taylor series expansion

1 1 1
I(x) :1(0)+XI,(0)+§X21”(0)+8X31,”(0)+"'+ﬁxn1(n)(0)

I N I

(n + 1) Unknowns

Observation
A (2w + 1)-patch gives 2w + 1 equations.

Conclusion
For a patch of size (2w + 1), it is only possible to fit a polynomial
of degree 2w.
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Compute derivatives at pixel O (i.e., the center of the patch)

Fit a polynomial of degree n to

the patch intensities Fitting a polynomial of degree n
Intensity Use nth order Taylor seriels expansion1 :
) 16c) = 1(0) +xI'(0) + 5x1"(0) + =x31"'(0) + -+ + mx"1<n>(0)

W AR A

(n + 1) Unknowns

-x

Iow+1)x1 = Xaw+1)xnlnx1

pOY I
v

—W 0 w Solve this linear system of
T T equations in terms of d
H . . . .
. ¥ + o minimizes the fit error.
— 3 3 Intensities Derivatives
~ (known) (unknown) ”I — Xd||2
Positions . .
(known) Solution d is called the

least squares fit
Faisal Qureshi - CSCI 3240U 18



Oth order estimation (constant) of I(x)
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Oth order estimation (constant) of I(x)

Solution is the mean intensity of the
patch

3 -2 -1 0 1 2 3

System of linear equations that Provides the estimate of intensity of the
needs solving: center of the patch

AT
I, 1
I3 1
Iy|=(1][do]
I 1
I 1
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1st order estimation (linear) of I(x)

System of linear equations that
needs solving:

] 11 =37

I, 1 -2 {

I3 1 -1 ,
L|=[1 o ZO]
Is 1 1|1

If |1 2 %
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1st order estimation (linear) of}I(x)

Solution minimizes the sum of vertical
distance between the line and the image

intensities.
System of linear equations that
needs solving: Provides the estimate of intensity and its
L] 1 -3 derivative at the patch center
L1 |1 -2
I 11 -1
d
LI=|1 o0 d"]
I5 1 % ! Matrix representation of a line (in 2D)
Ig
] L3 y=b+mx=[1 «x] [YI:I]
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2nd order estimation (quadratic) of I(x)
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2nd order estimation (quadratic) of I(x)

Solution fits a
parabola/hyperbola/ellipse to patch

intensities
System of linear equations that
needs solving: . Provides the estimate of intensity and its
VA L /2 first and second derivatives at the patch
I, 1 =2 i center
13 1 -1 /2 do
L|=(1 o0 0 |[|d, , ,
Matrix representation of second order
15 1 1 1/ dz .
I 2 polynomials
16 1 2 2 x? a
(7] 13 9/2_ y=ax*+bx+c=[a b c] )1c =[x 11,
2
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Least squares fitting
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Least squares fitting
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A
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Least squares fitting often use
the following notation to
represent the system of linear

equations
Ax=Db

The solution is
x=A"1b

where A~ 1 is inverse (or pseudo-
inverse) of A.

Recall that we need to solve the
following system of linear
equations when approximating
patches with polynomials.

I(2w+1)><1 = X(2W+1)><ndnx1
\ ] |\ L)
| |

b A X
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Least squares fitting
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Least squares fitting

y
A

® Solution: Robust least squares fitting

e Need more completed methods that can
better deal with outliers

—

> X

Least squares fitting

., Asingle outlier has resulted in a poor line-
*+ fitting estimate
@ Outlier
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Weighted least squares estimate of I(x)

For patch

I
Iw+1
12W+1

The system of linear equations becomes

3 2 -1 0 1 2 3 [(1)1 0 ] w1 0
. . . : I(2W+1)><1 = [ S 5 X(2w+1)><ndn><1
Give more weight to thg pixels 0 Wil 0 - Wyt
near center and less weight to
pixels that are far from Zcenter, and the solution d minimizes the norm:
e.g., w(x)=e* 2
W, 0
Bias our estimate of I'(0) ' . (I = Xxd)
0 - Wawir

towards the center of the
patch.
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Estimating image derivatives

* For each row y, define a
window of width 2w + 1 at
pixel (i.e., column) x

* Fit a polynomial (usually of
degree 1 or 2)

* Assign the fitted polynomial’s
derivates at location O (i.e.,

center of the patch, or column y
in the image space)

 Slide the window one over, until
the end of the row
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summary

* 1D image patches

* Approximating 1D image patches via polynomials

* Computing image derivatives via fitting polynomials

* Least squares solution to a system of linear equations
* Weighted least squares



