Computational Photography (CSCI 3240U)

Faisal Z. Qureshi http://vclab.science.ontariotechu.ca

OntarioTech

 $\underline{I}_{5} \underline{I}_{6} \underline{I}_{7} \underline{I}_{8} \underline{I}_{9} \underline{F}_{10} \underline{I}_{11} \underline{I}_{12} \underline{I}_{13} \underline{I}_{14} \underline{I}_{15}$ 15 \mathcal{O} # pixel = 3 location's for the new pixels: $(16-1) = \frac{15}{2} = 7.5$ I.1-TT7 0 15 D $I_{n} = I_{n}$ $(0, I_{7})$ and $(1, I_{8})$ $\frac{\gamma}{2} - \frac{\gamma}{2} = \frac{\chi - \chi_1}{2}$ y2-y, x2-x1 $3) \frac{y-I_{7}}{7} = \frac{x-0}{7}$ Ig-IJ 1-0 $y - I_7 = \chi (I_8 - I_7)$

7) $y = x(I_8 - I_7) + I_7$ $\Rightarrow y = \frac{1}{2}(J_8 - I_7) + I_7$ $\Rightarrow y = \frac{1}{2}I_8 - \frac{1}{2}I_7 + I_7$ $\Rightarrow y = \frac{1}{2}I_8 + \frac{1}{2}I_7$ $\Rightarrow y = \frac{I_7}{2} + \frac{I_8}{2}$

Today's lecture

- How to compute image derivatives by fitting polynomials to 1D image patches?
 - Taylor series expansion around a patch center
 - Least square fitting of a system of linear equations

Image as a surface in 3D

Consider a gray-scale image I(x, y) then the height of the surface at (x, y) is I(x, y). The surface passes through the 3D point (x, y, I(x, y)).

Image rows (or columns) as 2D graphs

X

Paths as curves in 2D

Image rows (or columns) as 2D graphs Polynomial approximation

Taylor series expansion of I(x) near the "patch" center 0 $\underline{I(x)} = \underline{I(0)} + xI'(0) + \frac{x^2}{2!}I''(0) + \frac{x^3}{3!}I'''(0) + \dots + \frac{x^n}{n!}I^{(n)} + R_{n+1}(x)$ Ottoorder 1tt order Factorials $m_1 = m(m-1) - 1$ and order The residual $R_{n+1}(x)$ satisfies: $\lim_{x\to 0} R_{n+1}(x) = 0$ Faisal Qureshi - CSCI 3240U

Image rows (or columns) as 2D graphs Polynomial approximation

Intensity I(x) I(0) 0x

Taylor series expansion of I(x) near the "patch" center 0 $I(x) = I(0) + xI'(0) + \frac{x^2}{2!}I''(0) + \frac{x^3}{3!}I'''(0) + \dots + \frac{x^n}{n!}I^{(n)} + R_{n+1}(x)$ Nth order approximation

For a given x, approximation depends on (n + 1) constants corresponding to the intensity derivative at the patch origin.

Intensity I(0) I(x) I(x) -w 0 x w

Taylor series expansion of I(x) near the patch center 0 $I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)$ Re-write in matrix form $I(x) \approx \begin{bmatrix} I & x & \pm x^{2} & \pm x^{3} \\ \hline I & = & \begin{bmatrix} I \\ X \end{pmatrix} \xrightarrow{(n+1)} \xrightarrow{(n+1)$ location se All the [I (0)] information about the fu. Faisal Qureshi - CSCI 3240U

Taylor series expansion of
$$I(x)$$
 near the patch center 0
 $I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)$
Re-write in matrix form
 $I(x) \approx \left[1 \quad x \quad \frac{1}{2}x^2 \quad \frac{1}{6}x^3 \quad \dots \quad \frac{1}{n!}x^n\right] \begin{bmatrix} I(0)\\I'(0)\\I''(0)\\\vdots\\I'''(0)\\\vdots\\I^{(n)} \end{bmatrix} \quad d_n$
For notational simplicity, lets
refer the vector of intensity and

its derivatives as d

Intensity

Taylor series expansion of I(x) near the patch center 0

$$I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)$$

Example Show the 0th order approximation

- 1/0

Intensity D I(x)I(0)0 Slope -w0 x w

Taylor series expansion of I(x) near the patch center 0

$$I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)$$

Practice Question Show the 1st and 2nd order approximations

$$y = m\pi + k$$

 z
 Δy
 $\Delta \pi$

Fit a polynomial of degree n to the patch intensities

Fitting a polynomial of degree 2

Use second-order Taylor series expansion $I(x) = I(0) + xI'(0) + \frac{1}{2}x^2I''(0)$ $I(x) = \left[1 \ x \ \frac{x}{2} \right]$ X:0, I(0)=3[3] = [1 0 0] do[4] = [1 2 2] diX:2, I(2)=4

Fit a polynomial of degree n to the patch intensities Fitting a polynomial of degree 2 Intensity Use second-order Taylor series expansion $I(x) = I(0) + xI'(0) + \frac{1}{2}x^2I''(0)$ I(x)I(0)Unknowns Using 2-pixels give me 2 equations. With 7-pixels, 9 will get 7 equations. x -w0 w

2.6

2.5

3

3.5

U

Fit a polynomial of degree n to the patch intensities

For convenience, we refer to patch intensities as I_x where $x \in [1, 2w + 1]$. Then I_{w+1} refers to the intensity at patch center. Fitting a polynomial of degree 2

Use second-order Taylor series expansion $I(x) = I(0) + xI'(0) + \frac{1}{2}x^2I''(0)$ I(x)=[1 x x] do do MATRIX FORM

Fit a polynomial of degree n to the patch intensities

Fitting a polynomial of degree n

Use nth order Taylor series expansion

$$I(x) = I(0) + xI'(0) + \frac{1}{2}x^{2}I''(0) + \frac{1}{6}x^{3}I'''(0) + \dots + \frac{1}{n!}x^{n}I^{(n)}(0)$$

$$(n+1) \text{ Unknowns}$$

Observation

A (2w + 1)-patch gives 2w + 1 equations.

Conclusion

For a patch of size (2w + 1), it is only possible to fit a polynomial of degree 2w.

Fit a polynomial of degree n to the patch intensities

Fitting a polynomial of degree n

Use nth order Taylor series expansion

$$I(x) = I(0) + xI'(0) + \frac{1}{2}x^{2}I''(0) + \frac{1}{6}x^{3}I'''(0) + \dots + \frac{1}{n!}x^{n}I^{(n)}(0)$$

$$(n+1) \text{ Unknowns}$$

Solve this linear system of equations in terms of *d* minimizes the fit error.

$\ \boldsymbol{I} - \boldsymbol{X}\boldsymbol{d}\ ^2$

Solution *d* is called the *least squares fit*

Oth order estimation (constant) of I(x)A patch size = 7. $I(x) = I(0) = [1][d_0]$

Patch size = 7. $E = \sum_{i=1}^{7} (I_i^{-} - I_0)^{2}$

System of linear equations that needs solving:

nati

$$E = \sum_{i=1}^{T} (I_i - d_i)^2$$

$$at denst do with x.$$

$$E = \sum_{i=1}^{T} (I_i - x)^2$$

$$\frac{d(x)}{dx} = -1$$

$$\frac{d$$

Oth order estimation (constant) of I(x)

System of linear equations that needs solving:

Solution is the mean intensity of the patch

Provides the estimate of intensity of the center of the patch

1st order estimation (linear) of I(x)

System of linear equations that needs solving:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \end{bmatrix} \underbrace{\not= b}_{\not= m}$$

1st order estimation (linear) of I(x) $E = \sum_{i=1}^{7} (I_i - Id_i + xd_i)$

System of linear equations that needs solving:

Solution minimizes the sum of vertical distance between the line and the image intensities.

Provides the estimate of intensity and its derivative at the patch center

Matrix representation of a line (in 2D)

$$y = b + mx = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix}$$

2nd order estimation (quadratic) of I(x) $I(x) = I(x) + \pi I'(x) + \pi I'(x$

System of linear equations that needs solving:

0

1

-1

2 3

-3 -2

$$\begin{bmatrix} I_1\\I_2\\I_3\\I_4\\I_5\\I_6\\I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 9/2\\1 & -2 & 2\\1 & -1 & 1/2\\1 & 0 & 0\\1 & 1 & 1/2\\1 & 2 & 2\\1 & 3 & 9/2 \end{bmatrix} \begin{bmatrix} d_0\\d_1\\d_2 \end{bmatrix}$$

2nd order estimation (quadratic) of I(x)

System of linear equations that needs solving:

Solution fits a parabola/hyperbola/ellipse to patch intensities

Provides the estimate of intensity and its first and second derivatives at the patch center

Matrix representation of second order polynomials

$$y = ax^{2} + bx + c = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x^{2} \\ x \\ 1 \end{bmatrix} = \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

hт

г

Least squares fitting often use the following notation to represent the system of linear equations

Ax = b

The solution is

 $\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{b}$

where A^{-1} is inverse (or pseudoinverse) of A.

Recall that we need to solve the following system of linear equations when approximating patches with polynomials.

Least squares fitting

Weighted least squares estimate of I(x)

Give more weight to the pixels near center and less weight to pixels that are far from center,

e.g., $\omega(x) = e^{-x^2}$

Bias our estimate of I'(0)towards the center of the patch. For patch

The system of linear equations becomes

$$\begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} \mathbf{I}_{(2w+1)\times 1} = \begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} \mathbf{X}_{(2w+1)\times n} \mathbf{d}_{n\times 1}$$

and the solution *d* minimizes the norm:

$$\left\| \begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} (I - Xd) \right\|^2$$

Faisal Qureshi - CSCI 3240U

34

Estimating image derivatives

- For each row y, define a window of width 2w + 1 at pixel (i.e., column) x
 - Fit a polynomial (usually of degree 1 or 2)
 - Assign the fitted polynomial's derivates at location 0 (i.e., center of the patch, or column y in the image space)
 - Slide the window one over, until the end of the row

Summary

- 1D image patches
- Approximating 1D image patches via polynomials
- Computing image derivatives via fitting polynomials
- Least squares solution to a system of linear equations
- Weighted least squares