Image Stitching

Computational Photography (CSCl 3240U)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca
$6 \underset{\substack{\text { Oniversity }}}{\substack{\text { Ontariotech }}}$

Today

- Image stitching

Euclidean vs. Homogeneous Coordinates

standard Euclidean
represention of
position $\vec{p}=(x, y)$.
$\left[\begin{array}{l}1 \\ 2\end{array}\right]=(1)\left[\begin{array}{l}1 \\ 0\end{array}\right]+(2)\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Coordinates

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Homogeneous coordinates (also called Projective representation of point \vec{p}).

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right] \text { for any } \lambda \neq 0 .}
\end{aligned}
$$

point $\vec{p} \quad$ Honngeveom coordinates of point \vec{p}

Examples:

$$
\left[\begin{array}{l}
3 \\
4
\end{array}\right] \rightarrow\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
12 \\
16 \\
4
\end{array}\right]=\cdots
$$

cartesian Homogeneom.
Q. Convert homogeneous coordinate $\left[\begin{array}{l}3 \\ 2 \\ 7\end{array}\right]$ to the
cartesian posit? cartesian pout?

$$
\text { A. }\left[\begin{array}{l}
3 / 7 \\
2 / 7
\end{array}\right] \quad\left[\begin{array}{l}
\text { REciPE } \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \&\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \rightarrow\left[\begin{array}{l}
a / c \\
b / c
\end{array}\right]}
\end{array}\right.
$$

$$
\begin{array}{r}
{\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \stackrel{\sim}{\sim}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]} \\
\text { Equality Cartesian } \\
\pm \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{array}
$$

Points at infinity

Homogeneous Number.

$$
\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\right] \xrightarrow{3}\left[\begin{array}{l}
3 / 0 \\
3 / 0
\end{array}\right]
$$

convert to cartesian

$$
\left[\begin{array}{l}
2 \\
0 \\
0.000001
\end{array}\right] ?
$$

Very far in the x direction
(1) We are able to describe points at infeinity
(2) Reprosenting directiois.

Line equations in homogeneous coordinates

$$
\frac{\frac{y=m x+b}{a x+b y+c}=0}{\uparrow \uparrow}
$$ line parameters $\left[\begin{array}{lll}a & b & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=0$

\qquad Homogeneous Pt.

Cross-product of two vectors

$$
\begin{aligned}
& a \times b=\left[\left.\begin{array}{ccc}
i & j & k \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array} \right\rvert\,\right. \\
& a \times b=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right] b
\end{aligned}
$$

The line passing through two points

$$
\begin{aligned}
& P_{1}=\left(x_{1}, y_{1}\right) \\
& P_{2}=\left(x_{2}, y_{2}\right) \\
& \frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} \\
& P_{1}=\left[\begin{array}{l}
x_{1} \\
y_{1} \\
1
\end{array}\right] \quad P_{2}=\left[\begin{array}{l}
x_{2} \\
y_{2} \\
1
\end{array}\right] \\
& \ell \cdot P_{1}=\varnothing \quad l \cdot P_{2}=\varnothing \\
& \text { unknown. }
\end{aligned}
$$

$$
l=P_{1} \times P_{2}
$$

Use cross-product to compute l that is orthogonal to P_{1} and p_{2}.

The point of intersection of two lines

observation:

$$
\begin{aligned}
& l_{1} \perp p \quad \because l_{1} \cdot p=0 \\
& l_{2} \perp p \quad \because l_{2} \cdot p=0 \\
& l_{1} \times l_{2}=p
\end{aligned}
$$

Intersecting two parallel lines

$$
\begin{aligned}
& x+2 y+1=0 \\
& x+3 y+0=0
\end{aligned}
$$

Find the witeveection pt.

$$
\begin{aligned}
& x+2 y+1=0 \\
& 6 x+12 y+6=0
\end{aligned}
$$

Find the intersection point.
Q.

$$
\begin{aligned}
& x+2 y+1=0 \\
& x+3 y=0
\end{aligned}
$$

Approach 1:

$$
\begin{aligned}
& \text { of }+3 y=0 \\
& x+2 y+1=0 \\
& y-1=0 \\
& y=1 \\
& x=-3
\end{aligned}
$$

$$
\text { Intersection } P k_{0}=\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
$$

Q.

$$
\begin{aligned}
x+2 y+1 & =0 \\
6 x+12 y+6 & =0
\end{aligned}
$$

Approach 1:
No cont solve. These equations are linearly dependent.
\rightarrow lives do not intersect.

These are parallel lives.

Approach 2.

$$
\begin{gathered}
l_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], l_{2}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right] \\
l_{1} \times l_{2}=\left[\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right] \\
\end{gathered}
$$

cartesian $\left[\begin{array}{c}-3 \\ 1\end{array}\right]$

$$
l_{1}=\left[\begin{array}{c}
1 \\
2 \\
1
\end{array}\right] \quad l_{2}=\left[\begin{array}{c}
6 \\
12 \\
6
\end{array}\right]
$$

$$
l_{2} \times l_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Convert to cartesian

$$
\left[\begin{array}{l}
\% \\
\%
\end{array}\right]
$$

Image stitching

57 images
Camera should change orientation only, not position.
Keep camera settings (gain, focus, speed, aperture) fixed, if possible.

Image stitching

Using 28 out of 57 images

Image stitching

Using all 57 images

Image stitching (Autostitch)

Seams are not visible

Using all 57 images. Laplacian blending.

Brown \& Lowe; ICCV 2003

Linear image wraps

- To align multiple photos for image stitching, we must warp these images in such a way that all lines are preserved.
- Lines before warping remain lines after warping
- Linear image wraps and homographies

Linear image wraps

- Definition: an image warp is linear if every 2D line l in the original image is transformed into a line l' in the warped image
- Property: Every linear warp can be expressed as a 3×3 matrix H that transforms homogeneous image coordinates (we won't discuss the proof here)

$$
\begin{aligned}
{\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] } & \longrightarrow{ }_{H}^{p}
\end{aligned} \longrightarrow\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} / \lambda \\
y^{\prime} / \lambda
\end{array}\right]
$$

Homogeneons Coordmiate of point (x, y)

Warping images using homography

Intensity at pixel in the source image I with homogeneous coordinates \boldsymbol{p}

Intensity at pixel in the warped image I^{\prime} with homogeneous coordinates $H \boldsymbol{p}$

Matrix H is called homography

Scaling H by a factor $\lambda \neq 0$ does not change homography

Warping images using homography

Linear warping equation:

$$
I(\boldsymbol{p})=I^{\prime}(H \boldsymbol{p}) \text { and also } I^{\prime}\left(\boldsymbol{q}^{\prime}\right)=I\left(H^{-1} \boldsymbol{q}^{\prime}\right)
$$

Computing warp I^{\prime} from I and H

- Compute H^{-1}
- To compute the color of pixel (u, v) in the warped image
- Compute $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=H^{-1}\left[\begin{array}{l}u \\ v \\ 1\end{array}\right]$
- Copy color from $I\left(\frac{a}{c}, \frac{b}{c}\right) \longleftarrow$ What if location $\left(\frac{a}{c}, \frac{b}{c}\right)$ is
 not valid pixel locations?

Homography \& image mosaicing

- Every photo taken from a tripod-mounted camera is related by a homography
- Assumptions
- No lens distortion
- Camera's center of projection does not move while camera is mounted on the tripod
- Problem
- These homographys that relate photos taken from a tripod-mounted camera are unknown
- We need to estimate them

