Image Stitching

Computational Photography (CSCl 3240U)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca
$6 \underset{\substack{\text { Oniversity }}}{\substack{\text { Ontariotech }}}$

Today

- Image stitching

Euclidean vs. Homogeneous Coordinates

Points at infinity

Line equations in homogeneous coordinates

Cross-product of two vectors

$$
\begin{aligned}
& a \times b=\left[\left.\begin{array}{ccc}
i & j & k \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array} \right\rvert\,\right. \\
& a \times b=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right] b
\end{aligned}
$$

The line passing through two points

The point of intersection of two lines

Intersecting two parallel lines

Image stitching

57 images
Camera should change orientation only, not position.
Keep camera settings (gain, focus, speed, aperture) fixed, if possible.

Image stitching

Using 28 out of 57 images

Image stitching

Using all 57 images

Image stitching (Autostitch)

Seams are not visible

Using all 57 images. Laplacian blending.

Brown \& Lowe; ICCV 2003

Linear image wraps

- To align multiple photos for image stitching, we must warp these images in such a way that all lines are preserved.
- Lines before warping remain lines after warping
- Linear image wraps and homographies

Linear image wraps

- Definition: an image warp is linear if every 2D line l in the original image is transformed into a line l' in the warped image
- Property: Every linear warp can be expressed as a 3×3 matrix H that transforms homogeneous image coordinates (we won't discuss the proof here)

Warping images using tomography

Linear warping equation: $I(p)=I^{\prime}(\underbrace{H p})$

Intensity at pixel in the source image I with homogeneous coordinates \boldsymbol{p}

Intensity at pixel in the warped image I^{\prime} with homogeneous coordinates Hp

Matrix H is called nomography

Scaling H by a factor $\lambda \neq 0$ does not change homography

Warping images using homography

Linear warping equation:

$$
I(\boldsymbol{p})=I^{\prime}(H \boldsymbol{p}) \text { and also } I^{\prime}\left(\boldsymbol{q}^{\prime}\right)=I\left(H^{-1} \boldsymbol{q}^{\prime}\right)
$$

Computing warp I^{\prime} from I and H

- Compute H^{-1}
- To compute the color of pixel (u, v) in the warped image
- Compute $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=H^{-1}\left[\begin{array}{l}u \\ v \\ 1\end{array}\right]$
- Copy color from $I\left(\frac{a}{c}, \frac{b}{c}\right)<\quad$ What if location $\left(\frac{a}{c}, \frac{b}{c}\right)$ is not valid pixel locations?
(1) Graduate scholarship applications are now open. Please check the graduate studies website.
(2) For thind-year students, start vimiking about summer research opportunities. These will set you up for honors théni, che.

Computing warp I^{\prime} from I and H

from
H^{-1}.

Homography \& image mosaicing

- Every photo taken from a tripod-mounted camera is related by a homography
- Assumptions
- No lens distortion
- Camera's center of projection does not move while camera is mounted on the tripod
- Problem
- These homographies that relate photos taken from a tripod-mounted camera are unknown
- We need to estimate them

Homography

- Generally speaking, points that lie on two planes are related via homography.

Homography

Homography

- Generally speaking, points that lie on two planes are related via homography.
- This also means that the projections of points (that lie on a common plane) in two cameras are related via homography.

Camera 2

Image stitching

Image stitching

Solving homography

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right],\left[\begin{array}{c}
3 x \\
3 y \\
3
\end{array}\right],
$$

$\uparrow_{\text {How many degeses.frecesom }}$

$$
A \vec{x}=\vec{b}
$$

$$
[A][\vec{x}]=[\vec{b}]
$$

Solving for homography (Step 1)

- Re-write homography relationship as homogeneous equations

$$
\begin{gather*}
\quad x_{i}^{\prime}=\frac{h_{11} x_{i}+h_{12} y_{i}+h_{13}}{h_{31} x_{i}+h_{32} y_{i}+h_{33}} \quad y_{i}^{\prime}=\frac{h_{21} x_{i}+h_{22} y_{i}+h_{23}}{h_{31} x_{i}+h_{32} y_{i}+h_{33}} \\
\downarrow \\
\Rightarrow h_{11} x_{i}+h_{12} y_{i}+h_{13}=h_{31} x_{i} x_{i}^{\prime}+h_{32} y_{i} x_{i}^{\prime}+h_{33} x_{i}^{\prime} \tag{A}\\
\Rightarrow \\
h_{11} x_{i}+h_{12} y_{i}+h_{13}-\underline{h_{31}} x_{i} x_{i}^{\prime}-\underline{h_{32} y_{i} x_{i}^{\prime}-h_{33} x_{i}^{\prime}=0} \\
\quad h_{21} x_{i}^{\prime}+h_{22} y_{i}+h_{23}-h_{31} x_{i} y_{i}^{\prime}-\underline{h 3} y_{i} y_{i}^{\prime}-h_{33} y_{i}^{\prime}=0
\end{gather*}
$$

Solving for homography (Step 2)

- We can then write these as matrix-vector product

Solving for homography (Step 3)

- Given n correspondences between two images, setup $A \boldsymbol{x}=0$ and solve for \boldsymbol{x}.

Solving $A \boldsymbol{x}=0$

- Estimate using least-square fitting

$$
\boldsymbol{x}^{*}=\underset{\boldsymbol{x}}{\operatorname{argmax}}\|A x\|^{2} \text { s.t. }\|x\|=1
$$

- The solution is the right null-space of A; therefore, the solution is the eigenvector corresponding to the smallest eigenvalue of $A^{T} A$

$$
A x=0 \rightarrow \text { Compute } A^{\top} A
$$

Eigenvectors / eigenvalues of $A^{\top} A$. Eigenvector corresponding to the Smallest eigenvalue is the solution.

Image stitching

- Estimate homography
- Use it to fill the colors from the "other" image

Extract features

Find matches

Use RANSAC to estimate homography

Quiz $f(x)=3 x^{2}+x$ at $x=3$.

$$
\begin{align*}
& \frac{\partial f}{\partial x}=6 x \\
& \frac{\partial^{2} f}{\partial x^{2}}=6 \\
& I=\left\{G_{0}, G_{1}, \cdots, G_{n}\right\} \\
& \uparrow \\
& I \\
& \begin{array}{l}
32 \times 32=1024 \quad 16 y t e \\
16 \times 16=256 \\
8 \times 8=64 \\
4 \times 4=16 \\
2 \times 2=4 \\
1 \times 1=1 \\
\hline\left[\begin{array}{c}
64 \\
8 \\
4
\end{array}\right]=\left[\begin{array}{c}
64 / 4 \\
8 / 4
\end{array}\right]=\left[\begin{array}{c}
16 \\
2
\end{array}\right] \\
\vec{a} \vec{b} \quad \vec{b} \quad \vec{a}, \vec{b}=\varnothing
\end{array}
\end{align*}
$$

Cross-product.

$$
\begin{aligned}
& \vec{a}=\left(a_{x}, a_{y}, a_{z}\right) \\
& \vec{b}=\left(b_{x}, b_{y}, b_{z}\right) \\
& v_{1}=(a, b, c) \\
& v_{2}=(d, e, f)
\end{aligned}
$$

$$
\begin{aligned}
& y \\
& =i\left(\left.\begin{array}{lll}
i & j & k \\
a & b & c \\
d & e & f
\end{array} \right\rvert\,\right. \\
& =i(b f-e c)-j(a f-d e)+k(a e-d b)
\end{aligned}
$$

$$
\frac{\left.\binom{\left(x_{1} y_{1}\right)}{\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]} \times \begin{array}{c}
\left(x_{1}, y_{2}\right) \\
x_{2} \\
y_{2} \\
1
\end{array}\right]}{\left|\begin{array}{lll}
i & j & k \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right|} \quad>_{d_{1}, l_{1} f}^{a, b_{c}}
$$

