Image Pyramids

Computational Photography (CSCI 3240U)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca
6 OntarioTech

Today's lecture

- Gaussian image pyramids
- Laplacian image pyramids
- Laplacian blending

2	0	1
6	5	7
8	9	0

$$
f(x, y) \underset{\text { Laplacian }}{\text { aplacian blending }} \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\nabla^{2} f
$$

$$
\left.\begin{array}{l}
f(x, y)=x^{3} y+3 x^{2} y^{2} \\
\frac{\partial f}{\partial x}=3 x^{2} y+6 x y^{2} \\
\frac{\partial^{2} f}{\partial x^{2}}=6 x y+6 y^{2}
\end{array}\right\} \begin{aligned}
& \frac{\partial f}{\partial y}=? \\
& \frac{\partial^{2} f}{\partial y^{2}}=?
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y, z)=x^{4} y+3 y z^{2} \\
& \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

Taylor Series

Coustruction of a Gausian Pramids

Gaussian image pyramids

- Blur the image with a Gaussian kernel
- Reduce image dimensions by half
- Discard every other row and column
- Repeat
- Till the desired numbers of levels have been reached or till the image because 1×1

Pyramid

$$
\begin{aligned}
& \text { !!! WITHOUT BLURRING VISUAL } \\
& \text { QUAUTY DROPS!!! }
\end{aligned}
$$

$$
I=g_{0}
$$

$$
\left[\begin{array}{rl}
g_{0}^{\prime} & =C_{\sigma} * g_{0} \\
g_{1} & =\text { subsample }\left(g_{0}^{\prime}\right)^{\text {drop alterate }} \\
\text { rows } 4 \\
\text { columns. }
\end{array}\right.
$$

Laplace operator

second derivative

$\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$

Compute the Laplace operator output for the shaded pixel

$I=$| 1 | 1 | 9 | 8 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 8 | 8 | 8 | 8 | 8 |
| 1 | 3 | 5 | 8 | 1 |
| 5 | 3 | 2 | 8 | 6 |

Sober

$$
H_{x}=\begin{array}{|l|l|l|}
\hline 1 & 0 & -1 \\
\hline 2 & 0 & -2 \\
\hline 1 & 0 & -1 \\
\hline
\end{array}
$$

$$
H_{y}=\begin{array}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 0 & 0 & 0 \\
\hline-1 & -2 & -1 \\
\hline
\end{array}
$$

3x3 Gaussian kernel (approx.)
$G=1 / 16$

1	2	1
2	4	2
1	2	1

Laplacian of a Gaussian

We can approximate the Laplacian of a Gaussian as follows

Construction of a Laplacian Dyramid
$I \rightarrow g_{0}$

drunsample.
discass every other row \& collamn.
upsample adduig o's between samples.

123333333333333333
01234567891011121314151617
18 bytes 5
(1) 112163

012345
6 bytes

Reconstruction from a Laplacian Pyramid.

$$
\left\{L_{0}, L_{1}, L_{2}, \ldots, g_{n}\right\} \underset{?}{\sim} I
$$

How do you reconstunct form Canssion Pyramid?

$$
\left\{g_{0}, g_{1}, g_{2}, \ldots, g_{n}\right\}
$$

Laplacian image pyramid

Given image $I=g_{0}$

- Convolve g_{i} with low-pass filter w and down-sample by half to construct g_{i+1}
- Downsample by discarding every other row and column
- Upsample g_{i+1} by double by inserting 0 s and and interpolating the missing values by convolving it with w and create $g^{\prime}{ }_{i}$
- Compute $L_{i}=g_{i}-g_{i}^{\prime}$
- Repeat

$$
\left\{h_{0}, L_{1}, L_{2}, \cdots, g_{n}\right\} .
$$

upsample.
Add Os between
samples

Laplacian Blendering

MERLE The Two laplacian Pyramids.

3	4	1	5
1	0	9	7
3	2	4	6
1	6	1	8
g_{0}			

g_{1}

$$
L_{0}=g_{0}-g_{0}^{\prime}
$$

$$
\operatorname{si2}^{\times 512 g_{0}} \rightarrow g_{1} \rightarrow g_{2} \rightarrow g_{3}
$$

Laplacian Pyramid of go

Reconstructing the original image

- g_{n} is upsampled by inserting 0 s and interpolating the missing value by convolving with w to get $g^{\prime}{ }_{n-1}$
- Compute $g_{n-1}=g_{n-1}^{\prime}+L_{n-1}$
- Repeat till g_{0}

Laplacian blending

$$
\begin{aligned}
& f(x, y) \quad \frac{\partial f}{\partial x}=f_{x} \quad \frac{\partial f}{\partial y}=f_{y} \\
& \nabla f=\left[\begin{array}{ll}
f_{x} & f_{y}
\end{array}\right]^{\top} \\
& \nabla^{2} f=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]
\end{aligned}
$$

Uses

- Scale-invariant image analysis
- Template matching
- Image registration
- Image enhancement
- Interest point detection
- Object detection
- Image compression

Summary

- Gaussian pyramid
- Coarse-to-fine search
- Multi-scale image analysis (hold this thought)
- Laplacian pyramid
- More compact image representation
- Can be used for image compositing (computation photography)
- Downsampling
- Nyquist limit: The Nyquist limit gives us a theoretical limit to what rate we have to sample a signal that contains data at a certain maximum frequency. Once we sample below that limit, not only can we not accurately sample the signal, but the data we get out has corrupting artifacts. These artifacts are "aliases".
- Need to sufficiently low-pass before downsampling

Various image representations

- Pixels
- Great for spatial processing, poor access to frequency
- Fourier transform
- Great for frequency analysis, poor spatial info
- Pyramids
- Trade-off between spatial and frequency information

