Rigid Body Dynamics
Simulation and Modeling (CSCI 3010U)

Faisal Qureshi
http://vclab.science.uoit.ca

Computer Science, Faculty of Science
Rigid Bodies

Particle

Rigid Body
Particle vs. Rigid Body Dynamics

- State of a particle
 - Position \mathbf{p}
 - Velocity \mathbf{v}

- State of a rigid body
 - Position \mathbf{p}
 - Velocity \mathbf{v}
 - Orientation θ
 - Angular velocity ω
Coordinate frames

- $[x]_e$ is $(1, 2)$ in coordinate frame described by e_1 and e_2
- What is $[x]_u$, i.e., $[x]_u$ expressed in u_1 and u_2?
Coordinate frames

$x = e_1 + 2e_2$

$x = [u_0]_e + c_1[u_1]_e + c_2[u_2]_e$

Note that $[x]_u = (c_1, c_2)$, so we are interested in finding values of c_1 and c_2.
Coordinate frames

\[
[u_0]_e + c_1[u_1]_e + c_2[u_2]_e = [x]_e
\]

\[
c_1[u_1]_e + c_2[u_2]_e = [x]_e - [u_0]_e
\]

\[
\begin{bmatrix}
[u_1]_e & [u_2]_e \\
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\end{bmatrix} = \begin{bmatrix}
c_1 \\
c_2 \\
\end{bmatrix} = \begin{bmatrix}
[u_1]_e & [u_2]_e \\
\end{bmatrix}^{-1} ([x]_e - [u_0]_e)
\]

Change of basis

\[
[x]_u = \begin{bmatrix}
[u_1]_e & [u_2]_e \\
\end{bmatrix}^{-1} ([x]_e - [u_0]_e)
\]
Coordinate Frames Exercise - Part 1

What is $[x]_u$?
Coordinate Frames Exercise - Part 2

What is $[x]_u$?
Angular Velocity

- \(\omega = \frac{d\theta}{dt} \)
- Units are radians per second
- Radian is the angle subtended by an arc whose length is equal to its radius: \(\theta = \frac{l}{r} \)

Linear Velocity at a Point on the Body

- \(\mathbf{v} = \mathbf{r} \omega \)
Rigid Bodies in 3D

- Unlike 2D, orientation in 3D cannot be described using any angle.
- There are many schemes for describing rotations in 3D.
- We will use a 3x3 rotation matrix \mathbf{R}.
- We need to find the relationship between angular velocity and rotation matrix.

We will return to this later.
Equations of Motions for Rigid Bodies

Force acting on a Rigid Body

► Net force acting on an object is the rate of change of its linear momentum.

\[
\frac{dP}{dt} = F
\]

► Linear momentum: \(P = mv \), where \(m \) is the mass of the object and \(v \) is its linear velocity

Torque acting on a rigid body

► Net torque acting on an object (about point \(o \)) is the rate of change of its angular momentum.

\[
\frac{dL}{dt} = N
\]

► Angular momentum: \(L = \mathbf{I}\omega \), where \(\mathbf{I} \) is the inertia tensor and \(\omega \) is its angular velocity (about point \(o \))
Torque

▶ Torque (in this example, clockwise or counter-clockwise):

\[T = \mathbf{d} \times \mathbf{F} \]

▶ When force passes through the center of mass, the associated \(\mathbf{d} \) vector is zero; therefore, this force produces no torque or rotational effect
Center of Mass (COM)

The center of mass is the mean location of all the mass of the body.

The center of mass \mathbf{r} is defined as

$$r_x = \frac{1}{m} \int \rho(x, y, z) x dV$$
$$r_y = \frac{1}{m} \int \rho(x, y, z) y dV$$
$$r_z = \frac{1}{m} \int \rho(x, y, z) z dV$$

where $\rho(x, y, z)$ is the density at point (x, y, z).
COM as the origin of the body coordinate frame

- Selecting COM as the origin of the body coordinate frame greatly simplifies the equation of motions.
- Any force applied to (or passing through) the COM doesn’t induce rotation.

- Force 1 results in translation only.
- Force 2 results in translation only.
- Force 3 results in both translation and rotation.
Center of mass of a rectangular brick with point masses at its 8 vertices

- x_i, y_i, and z_i are ith vertex location in the world coordinates.
- m_i is the value of the point mass at vertex i.

(r_x, r_y, r_z) is the center of mass of the rectangular brick in the world coordinates.

\[
\begin{align*}
 r_x &= \left(\sum_i m_i x_i \right) / \left(\sum_i m_i \right) \\
 r_y &= \left(\sum_i m_i y_i \right) / \left(\sum_i m_i \right) \\
 r_z &= \left(\sum_i m_i z_i \right) / \left(\sum_i m_i \right)
\end{align*}
\]
COM - Example

% MATLAB Code
m = ones(1,8) / 8.;
r = zeros(8, 3);
r(1,:) = [1, 1, 1];
r(2,:) = r(1,:) + [w, 0, 0];
r(3,:) = r(2,:) + [0, h, 0];
r(4,:) = r(1,:) + [0, h, 0];
r(5,:) = r(4,:) + [0, 0, d];
r(6,:) = r(3,:) + [0, 0, d];
r(7,:) = r(2,:) + [0, 0, d];
r(8,:) = r(1,:) + [0, 0, d];

% compute center of mass first
M = sum(m);
com = (m(1)*r(1,:) + ...
m(2)*r(2,:) + ...
m(3)*r(3,:) + ...
m(4)*r(4,:) + ...
m(5)*r(5,:) + ...
m(6)*r(6,:) + ...
m(7)*r(7,:) + ...
m(8)*r(8,:)) / M
Inertia Tensor

- Inertia tensor provides a concise description of the mass distribution around the center of mass

\[I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix} \]

\[I_{xx} = \int \rho(x, y, z)(y^2 + z^2) dV \]
\[I_{yy} = \int \rho(x, y, z)(x^2 + z^2) dV \]
\[I_{zz} = \int \rho(x, y, z)(y^2 + x^2) dV \]
\[I_{xy} = \int \rho(x, y, z)xy dV \]
\[I_{xz} = \int \rho(x, y, z)xz dV \]
\[I_{yz} = \int \rho(x, y, z)yz dV \]
Inertia Tensor - Discretization

\[
I = \begin{bmatrix}
I_{xx} & -I_{xy} & -I_{xz} \\
-I_{yx} & I_{yy} & -I_{yz} \\
-I_{zx} & -I_{zy} & I_{zz}
\end{bmatrix}
\]

\(m_i \) are point masses.

\[
\begin{align*}
I_{xx} &= \sum_i m_i (y_i^2 + z_i^2) \\
I_{yy} &= \sum_i m_i (z_i^2 + x_i^2) \\
I_{zz} &= \sum_i m_i (x_i^2 + y_i^2) \\
I_{xy} &= I_{yx} = \sum_i m_i x_i y_i \\
I_{xz} &= I_{zx} = \sum_i m_i x_i z_i \\
I_{yz} &= I_{zy} = \sum_i m_i y_i z_i
\end{align*}
\]
Inertia Tensor - Example

% CONTINUED FROM PREVIOUS.
% com - center of mass (1x3)
% r - vertex locations (8x3)

% now lets compute inertia tensor
rp = r - repmat(com, 8, 1);

I = zeros(3,3);

mrp = repmat(m',1,3) .* rp

I(1,1) = rp(:,2)' * mrp(:,2) + rp(:,3)' * mrp(:,3);
I(2,1) = - rp(:,1)' * mrp(:,2);
I(3,1) = - rp(:,1)' * mrp(:,3);
I(1,2) = I(2,1);
I(2,2) = rp(:,1)' * mrp(:,1) + rp(:,3)' * mrp(:,3);
I(3,2) = - rp(:,2)' * mrp(:,3);
I(1,3) = I(3,1);
I(2,3) = I(3,2);
I(3,3) = rp(:,1)' * mrp(:,1) + rp(:,2)' * mrp(:,2);
Inertia Tensor in the Body Coordinate Frame

- The inertia tensor \mathbf{I} that we just computed is expressed in the world coordinate frame. Consequently it changes as the orientation of the rigid body changes.
- We can express the inertia tensor in the body coordinate frame.
- We refer to inertia tensor in the body coordinate frame as \mathbf{I}_{body}.
- \mathbf{I}_{body} doesn’t change as the orientation of the body changes.
- \mathbf{I}_{body} is diagonal, i.e.,

$$
\mathbf{I}_{body} = \begin{bmatrix}
I_{11} & 0 & 0 \\
0 & I_{22} & 0 \\
0 & 0 & I_{33}
\end{bmatrix}
$$

- Inverse of \mathbf{I}_{body}:

$$
\mathbf{I}_{body}^{-1} = \begin{bmatrix}
\frac{1}{I_{11}} & 0 & 0 \\
0 & \frac{1}{I_{22}} & 0 \\
0 & 0 & \frac{1}{I_{33}}
\end{bmatrix}
$$
Computing I_{body}

Option 1

Diagonalize I
- Compute eigenvectors and eigenvalues of I
- Eigenvalues form the diagonal matrix I_{body}
- Eigenvectors form the 3-by-3 rotation matrix R that describes the orientation of the rigid body
- This is the preferred approach

Option 2

Use 3-by-3 rotation matrix R that describes the orientation of the rigid body
- $I_{body} = R^T IR$
Inertia Tensor

- Inertia tensors are available for many canonical objects: rectangles, circles, spheres, etc.
- Efficient algorithms exist to compute inertia tensor, center of mass, body coordinate frames a given polygonal model of an object
- Many tools exist to construct polygonal models of 2D/3D rigid objects
Body coordinate frame

Attach a coordinate frame with each rigid body

- Origin = center of mass (defined in the world frame)
- Axes = defined in the world coordinate frame by a 3-by-3 rotation matrix R. Columns of R define the x, y and z axes of the body coordinate frame
- Inertia tensor I_{body} is constant and diagonal in this frame

From body coordinate frame to world coordinate frame.
World and Body Coordinate Frames

World coordinate frame
- Collision detection and response
- Display and visualization

Body coordinate frame
- Compute quantitites such as inertia tensor once and store them for later use.
Rigid Body Dynamics

State variables

<table>
<thead>
<tr>
<th>Position</th>
<th>(\mathbf{x})</th>
<th>1 by 3 vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td>(\mathbf{R})</td>
<td>3 by 3 rotation matrix</td>
</tr>
<tr>
<td>Linear Momentum</td>
<td>(\mathbf{P})</td>
<td>1 by 3 vector</td>
</tr>
<tr>
<td>Angular Momentum</td>
<td>(\mathbf{L})</td>
<td>1 by 3 vector</td>
</tr>
</tbody>
</table>

Constants

<table>
<thead>
<tr>
<th>Mass</th>
<th>(m)</th>
<th>scalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inertia tensor</td>
<td>(I_{body})</td>
<td>3 by 3 matrix (in body frame)</td>
</tr>
</tbody>
</table>

Derived quantities

<table>
<thead>
<tr>
<th>Linear velocity</th>
<th>(\mathbf{v})</th>
<th>1 by 3 vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular velocity</td>
<td>(\mathbf{\omega})</td>
<td>1 by 3 vector</td>
</tr>
<tr>
<td>Inertia tensor</td>
<td>(I^{-1})</td>
<td>3 by 3 matrix (in world frame)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total force</th>
<th>(\mathbf{F})</th>
<th>1 by 3 vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total torque</td>
<td>(\mathbf{T})</td>
<td>1 by 3 vector</td>
</tr>
</tbody>
</table>
Rigid Body Dynamics

Linear effects

- $\frac{dx}{dt} = v$
- $\frac{dP}{dt} = F$
- $v = \frac{P}{m}$

Angular effects

- $\frac{dR}{dt} = \omega^* R$, where

$$\begin{bmatrix}
0 & -\omega_x & \omega_y \\
\omega_z & 0 & -\omega_z \\
-\omega_y & \omega_x & 0
\end{bmatrix}$$

- $\frac{dL}{dt} = N$
- $\omega = I^{-1} L$
- $I^{-1} = R I_{body}^{-1} R^T$
Rigid Body Dynamics

// x - position
state[0] = x[0];
state[1] = x[1];
state[2] = x[2];

// R - orientation
state[3] = R[0][0];
state[4] = R[1][0];
state[5] = R[2][0];
state[6] = R[0][1];
state[7] = R[1][1];
state[8] = R[2][1];
state[9] = R[0][2];
state[10] = R[1][2];

// P - linear momentum
state[12] = P[0];
state[13] = P[1];
state[14] = P[2];

// L - angular momentum
state[15] = L[0];
state[16] = L[1];
state[17] = L[2];

// t - OSP needs it
state[18] = 0.0

Init: Flatten state variables into a state vector

Rate[] encodes 1st order ODE for our system

Let ODE solve the state and then copy the state back to our state variables x, R, L and T.
Rigid Body Dynamics: Numerical Considerations

- Over time numerical errors accumulate in rotation matrix \mathbf{R}.
- This effects our computation of \mathbf{I} and $\boldsymbol{\omega}$.
- Orthonormalize \mathbf{R} after every timestep.

Orthonormalization

1. Normalize \mathbf{R}_1 (excluding last column).
2. $\mathbf{R}_1 \times \mathbf{R}_2 = \mathbf{R}_3$ (normalize).
3. $\mathbf{R}_3 \times \mathbf{R}_1 = \mathbf{R}_2$ (normalize).

Here \mathbf{R}_i represent the i-th row of matrix \mathbf{R}.

Errors were shifted in the matrix.
Representing Rotations

- We chose to represent rotations as 3-by-3 rotation matrices
- Quaternions can be used to represent rotations
- Most rigid body dynamics systems use quaternions
- See Ch. 17 of the textbook
Representing Rigid Bodies

- A rigid body has a shape that does not change over time
- It can translate through space and rotate
- A rigid body occupies a volume of space
- The distribution of its mass over this volume determines its motion or dynamics
- Shape representation is studied extensively in computer graphics and some areas of mechanical engineering and mathematics
- There are many ways of representing shape, each with a different set of advantages and disadvantages
- We will stick to polygons
Shape Representation using Polygons

- The surface of the object is represented by a collection of polygons.
- The polygons are connected across their edges to form a continuous surface.
- In order to have a well behaved representation we need to constrain our polygons.
- First all of the polygons must be convex, note that we can always convert a concave polygon into two or more convex ones.

![Convex Polygon](image1)
![Concave Polygon](image2)
![Non-planar Polygon](image3)

- Convex Polygon
- Concave Polygon
- Non-planar Polygon

![Self-intersecting Polygon](image4)
![Triangle](image5)

- Self-intersecting Polygon
- Triangle
Shape Representation using Triangles

- We will stick to triangles
- Any convex polygon can be converted to a collection of triangles

Advantages
- We are only dealing with one type of polygon, a uniform representation
- Triangles are the simplest polygon, makes our algorithms simpler
- Many modeling programs allow us to construct polygonal models
- Easy to display
- Many efficient algorithms exist for manipulating triangles

Disadvantages
- Not a compact representation
- Not a good approximation for curved surfaces
Other Types of Dynamics

- Articulated figures
 - Rigid bodies connected by joints and hinges
 - Used to model the dynamics of human figures
- Vehicle dynamics used to model the dynamics of various kinds of vehicles
- Deformable objects
 - Cloth, soft toys, etc.
- These are more complicated than what we have seen so far
Readings

- Ch. 17 of the textbook