
1 / 107

Random Processes

Simulation and Modeling (CSCI 3010U)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

2 / 107

Figure 1: Dilbert and randomness

3 / 107

Random Processes

I Simulate random processes or activities
I Approximate phenomena that are too hard to describe

deterministically, or a deterministic simulation is too costly
I Provide variation in the simulation data, so we can estimate

errors or compute the range of an output

4 / 107

Monte Carlo Simulations

I Using repeated sampling to determine the properties of some
phenomenon

I Principle of inferential statistics
I A random sample tends to exhibit the same properties as the

population from which it is drawn from
I This principle doesn’t always hold, which can lead to inaccurate

results

5 / 107

Example

What is the probability of not getting a single head after 10 coin
flips?

I The probability of not getting a head after a single toss is 0.5
(assuming a fair coin)

I So the probability of not getting a head after 10 tosses is
(0.5)10

6 / 107

Example

In the game of craps, “boxcars” refers to rolling a total of 12 with
two dice. What is the probability of getting a boxcars in a game of
craps after 24 throws?

Solve analytically

I Each die has 6 sides, so there are a total of 6 ◊ 6 = 36 possible
outcomes when rolling two dice.

I There is only 1 combination of outcomes that results in a total
of 12: rolling a 6 on both dice. So, the probability of rolling
boxcars on a single roll is 1

36

I Probability of not rolling a boxcar in one throw
1
1 ≠ 1

36

2

I Probability of not rolling a boxcar in 24 throws
1
1 ≠ 1

36

224

I Probability of rolling a boxcar in 24 throws
3

1 ≠
1
1 ≠ 1

36

2244

7 / 107

Monte Carlo Simulation

The concept of Monte Carlo simulations is attributed to the work of scientists Stanislaw Ulam, a Polish

mathematician, and John von Neumann, a Hungarian-American mathematician, during the 1940s.

During World War II, Ulam was working on the Manhattan Project, the project that developed the atomic bomb. He

was seeking solutions to mathematical problems related to the neutron di�usion equation, which described how

neutrons moved in a fissile material. To overcome the limitations of analytical methods, Ulam conceived of using

random sampling techniques to approximate solutions to complex mathematical problems.

Together with von Neumann, Ulam developed the concept further, and they applied it to a wide range of scientific

and engineering problems. The term “Monte Carlo” was coined as a reference to the famous casino in Monaco

known for its games of chance, reflecting the probabilistic nature of the method.

The first documented use of the Monte Carlo method was in 1947 in the Los Alamos Scientific Laboratory, where

Ulam and von Neumann used it to simulate neutron di�usion. Since then, Monte Carlo simulations have become a

fundamental tool in various fields such as physics, engineering, finance, and computer science.

8 / 107

Monte Carlo Simulation - Boxcars in 24 throws

def throw_dice():
return random.choice([1,2,3,4,5,6])

def throw_two_dice(num_times):
dice_throws = []
for i in range(num_times):

dice_throws.append((throw_dice(), throw_dice()))
return dice_throws

def crap_boxcar(num_dice_throws):
success = 0.
outcomes = throw_two_dice(num_times = num_dice_throws)
for i in outcomes:

if i == (6,6):
success += 1
break

return success

9 / 107

Monte Carlo Simulation - Boxcars in 24 throws

def simulate_crap_boxcar(num_trials):
success = 0.
for i in range(num_trials):

if crap_boxcar(24) >= 1: # We got at least one (6,6) in this series of
success += 1 # 24 two-dice throws

return success / num_trials

num_trials = 100000
p_monte_carlo = simulate_crap_boxcar(num_trials = num_trials)

Prob. of getting at least one (6,6) in 24 tries

I Analytical: 0.4914038761309034
I Monte Carlo Simulation (100000 trials): 0.49359
I Monte Carlo Simulation (10 trials): 0.1

10 / 107

Monte Carlo integration

Monte Carlo integration is a technique for computing the value of a
multidimensional definite integral

I =
⁄

�
f(x)dx,

where �, as subset of Rm, has volume

V =
⁄

�
dx.

In naive Monte Carlo approach, points

x1, x2, · · · , xn œ �

are sampled uniformly on �. Then, I can be approximated by

I ¥ V
1
N

Nÿ

i=1
f(xi) = V ÈfÍ

Ff

mean value

fat
sampled

locations

11 / 107

Monte Carlo integration

Example: Compute I =
s 1

0 x
2
dx?

Steps:

I V = 1 ≠ 0 = 1
I Sample N values from uniform distribution between 0 and 1

{u1, u2, u3, · · · , uN }

I The answer is

I = V
1
N

Nÿ

i=1
f(xi) = (1)

A
1
N

Nÿ

i=1
u

2
i

B

= 1
N

Nÿ

i=1
u

2
i

84
1st

I
f f t.itfsa

12 / 107

How many trials (or samples)?

Law of Large Numbers

In repeated independent tests with some actual probability p of an
outcome for each test, the chance that the fraction of time that
outcome occurs converges to p as the number of trials goes to
infinity

Gambler’s Fallacy

I Say you flip a coin 10 times, and get a string of heads. Are we
more likely to get a head the 11th time?
I No

13 / 107

How many trials?

How many samples are needed to have confidence in results?

Notion of Variance

How much spread there is in the possible outcomes?

Example

Say we want to compute the mean cgpa for students at a particular
university. Obviously, the best option is to get cgpa for every
student and then compute the mean. Oftentimes it is not possible
to sample the entire population, so we look at the cgpa of a subset
of students (called a sample) and estimate the mean cgpa. In this
case, the estimated values fluctuates between di�erent subsets of
students (or samples). If estimated mean values vary greatly
between the various subset of students then it lowers our confidence
in the estimated value.

14 / 107

Mean, Variance, and Standard Deviation

Mean for a sample {x1, x2, x3, · · · , xN } is

µ = 1
N

Nÿ

i=1
xi,

where N refers to sample size.

Variance is

‡
2 = 1

N

Nÿ

i=1
(xi ≠ µ)2

.

Standard deviation is simply

‡ =
Ô

‡2

15 / 107

Normal (Gaussian) Distribution

I Nice mathematical properties
I Models many naturally occuring phenomenons really well
I Many random variables are roughly normally distributed
I Many experimental setups have normally distributed errors

16 / 107

Normal Distribution and Confidence Intervals

I Normal distribution is characterized by mean and variance
I Mean and variance can be used to construct confidence

intervals
I 68% of data within 1 standard deviation of mean
I 95% of data within 2 standard deviation of mean
I 99.7% of data within 3 standard deviation of mean

17 / 107

Central Limit Theorem

When working with large sample sizes (N Ø 30), the distribution of
sample means tends to approximate a Normal (Gaussian)
distribution, regardless of the distributions where the samples were
drawn from. Therefore, Z-scores are based on standard Normal
distribution.

18 / 107

Z-score

Z-score, also called standard score, is a measure of how many
standard deviations a data point is away from the mean of a
distribution. It is computed as

z = x ≠ µ

‡
,

where x is a data point, µ is the mean, and ‡ is the standard
deviation.

Z-score is often used to compare data points from di�erent
distributions or to determine the likelihood of a particular value
occurring within a distribution.

If a data point has a z-score of 1 then this data point is 1 standard
deviation away from the mean.

11

19 / 107

Using Z-score for comparison across populations

Z-score allows comparisons across di�erent populations or samples
with varying means and standard deviations; therefore, Z-score is
used to compute confidence intervals for the estimated mean (for a
given sample). This is so because Z-score provides a standardized
measure of how far an estimated mean is from the true mean (i.e.,
mean computed over the entire student population.).

20 / 107

Confidence intervals

Computing confidence interval

I Collect a sample
I Calculate sample mean µ and sample standard deviation ‡

I Choose a confidence level, e.g., 90%, 95% (this is often
problem specific)

I Find the Z-score corresponding to the chosen confidence level
(see Central Limit Theorem)

I Compute
Margin of Error = z ◊ ‡Ô

N

I Confidence internal is then

Confidence internal = µ ± Margin of Error

21 / 107

Coe�cient of variation

A statistical measure that expresses the relative variability of a
dataset compared to its mean

CV = ‡

µ
◊ 100,

here ‡ and µ denote the standard deviation and the mean,
respectively. Here CV is expressed as a percentage.

The coe�cient of variation is particularly useful when comparing the
variability of datasets with di�erent units or scales. A higher
coe�cient of variation indicates greater relative variability, while a
lower coe�cient of variation suggests less relative variability.

Problems with coe�cient of variation

I Not well behaved when mean µ is near zero
I It cannot be used to compute confidence intervals

22 / 107

Examples: Nuclear Decay

23 / 107

Nuclear Decay

Nuclear decay, also known as radioactive decay, refers to the process by
which unstable atomic nuclei lose energy by emitting radiation. This
process results in the transformation of the nucleus into a more stable
configuration. There are several types of nuclear decay, including alpha
decay, beta decay, gamma decay, and electron capture. Each type involves
the emission of di�erent particles or radiation from the nucleus, leading to
the formation of a di�erent element or isotope. Nuclear decay is a
fundamental concept in nuclear physics and plays a crucial role in various
natural processes, such as the aging of rocks, the generation of heat in
Earth’s interior, and the functioning of nuclear reactors.

24 / 107

Nuclear Decay

Consider a large number of radioactive nuclei. According to the law
of radioactive decay, the rate of decay is proportional to the number
of nuclei. We can express this as the following di�erential equation:

dN

dt
= ≠⁄N.

Here, N is the number of nuclei and ⁄ is the decay constant.

25 / 107

Nuclear Decay - Analytical Solution

We can actually solve this equation analytically and determine the
number of nuclei remaining after time t:

N(t) = N(0)e≠⁄t
.

I N(0) is the initial number of nuclei.
I N(t) is the number of nuclei remaining after time t.
I ⁄ is a measure of the probability of a radioactive nucleus

decaying per unit time.
I e is the base of the natural logarithm (approximately equal to

2.71828)
I t is the time elapsed

26 / 107

Nuclear Decay

l = 0.05 # lambda
n0 = 100000 # number of nuclei at time 0
tmax = 60 # run till time is 60
steps = 10000 # how many samples between time 0 and 60

Nuclear Decay - Analytical solution

times = np.linspace(0, tmax, steps)
nta = n0 * np.exp(-l * times)

27 / 107

Nuclear Decay - Monte Carlo simulation

Each nucleus is identical, and we assume that during any given time
interval �t, each nucleus has the probability p of decaying.

prob_of_decay_per_time_step = l * tmax / steps

def nuclear_decay_monte_carlo(n0, p, steps):
nt = np.empty([steps, 1])
nt[0] = n0

for i in range(1,steps):
decay_or_not = np.random.random((1,int(nt[i-1])))
num_not_decayed = np.sum(decay_or_not > p)
nt[i] = num_not_decayed

return nt

nt = nuclear_decay_monte_carlo(n0, prob_of_decay_per_time_step, steps)

28 / 107

Nuclear Decay

29 / 107

Random Walks

30 / 107

Random Walks

In 1D random walk, the walker starts at origin and takes a right
step with probability p and left step with probability 1 ≠ p.

n = 1000
x(0) = 0
do:

n -= n
c = draw_a_random_number()
if c < p:

x(t+1) = x(t) + 1
else:

x(t+1) = x(t) - 1
while n > 0

The walk takes one step in each time step of the simulation.

31 / 107

Multi-dimensional random walks

It is straightforward to extend a random walk to higher dimensions.

Example: 2D random walk
A walker takes one of up, down, left or right steps based upon the
associated probabilities: pu, pd, pl and pr. These probabilities all
sum to 1.

32 / 107

Collecting statistics from random walks

To get anything meaningful out of such simulations, we need to
repeat them many times and collect statistics.

I Mean distance, what is the mean position of the walker after
N steps.

I Maximum distance, what is the maximum distance that a
walker reached during one of the runs.

I Average maximum distance, what is the average maximum
distance that walker reached during all the runs.

I Histogram of positions

33 / 107

Random step lengths

I Changing step size at each time step
I Step size can also be a function of the length of the walk

I Either growing or shrinking as the walks get longer
I Di�erent step sizes in di�erent directions

34 / 107

Boundary conditions 1

What if the space is limited and the random walk hits a boundary?

I Absorbing boundary, walker is consumed upon hitting the
boundary.

I Reflecting boundary, walker changes direction upon hitting the
boundary.

I Periodic boundary, walker appears at the positive boundary
after passing through the negative boundary and vice versa.
I Often used to simulated circular domains.

I Random boundary, walker is placed at a random location each
time it hits the boundary.

35 / 107

Boundary conditions 2

Absorbing boundary conditions

I With absorbing boundary conditions the walks can end early
I This creates significant challenges when collecting statistics

Reflecting boundary conditions

I Walker tends to stay at the edges of the region

36 / 107

Boundary conditions 3

Periodic boundary conditions

I Periodic boundary conditions produce a more uniform
distribution

I This is easily explained, since walkers do not stick to the edges

Random boundary conditions

I Creates uniform trails (distribution over locations)

37 / 107

Random walks: are they truly that random?

Some aspects of random works are surprising in the sense that these
are not random at all.

I E.g., even length random walks (with step size of 1) all end up
at even locations.

I E.g., odd length random walks (with step size of 1) all end up
at odd locations.

We can introduce randomness by exploiting boundary conditions.

38 / 107

Variations on random walks 1

Traps

Trap is an extension of absorbing boundary condition. Here traps
are randomly placed all over the region. A walker is consumed upon
reaching a trap. Optionally it is possible to randomly place the
walker at a di�erent location in the region.
Absorbing boundary conditions and traps can often lead to very
short walks.
I One option is to create a new walker (usually at a random

location) whenever a walker dies.
I Second option is to have more than one walkers in parallel. If

there are large enough walkers, the chances are high that some
of these will survive longer than others.

39 / 107

Variations on random walks 2

When multiple walkers are active at the same time, it raises the
spectre of collisions between walkers.

I Ignore the collisions
I Kill o� one of the walker
I Walkers transform each other upon collision

I This is often used when simulating chemical reactions

40 / 107

Solving the di�usion equation

Consider the di�usion equation

ˆP (x, t)
ˆt

= D
ˆ

2
P (x, t)
ˆx2

It is used to model a variety of physical processes, including fluid
flow. It is also used in finance. Analytical solutions to di�usion
equation do not exist except for the simplest cases. A suite of
numerical solutions have been proposed in the literature. Numerical
solutions, however, cannot be easily parallelized. Furthermore, these
can only be used for a small set of boundary conditions.

41 / 107

Solving the di�usion equation

It turns out that we can use random walks to solve the di�usion
equation. Asymptotically as the number of walks approach infinity,
the average properties of a random walk approach the solution to a
di�usion equation.

Insight

I We are essentially replacing human time with computer time.
Instead of coming up with a numerical or analytical solution to
the problem, we will let computer figure it by running millions
and millions of random walks.

I It is easy to model boundary conditions in random walks.
I Random walks can easily exploit multiple processors.

42 / 107

Modeling a rain drop falling in strong wind

43 / 107

Variations on random walks

Persistent random walks

Probabilities for the current step depends upon the previous step.

Multi-state random walks

The random walk can be in one of multiple states, which determine
the probabilities for the current step.
This is akin to having a finite state machine with random transitions.

44 / 107

An application of multi-state random walks

Chromatographic columns

One application of multi-state walks is di�usion in a
chromatographic column. In this application we are interested in
how far a particular compound will move along a chromatographic
column in a certain length of time. For each type of compound we
have a probability – that it will move v units in each time step and
a probability 1 ≠ – that it will not move.

45 / 107

Self avoiding random walks

I A SAW is a random walk on a 2D or 3D lattice that cannot
return to one of the lattice points that it has already visited

I SAWs are of interest in several areas of physics and
mathematics, and surprisingly a number of their properties
have resisted rigorous mathematical analysis, so they must be
studied in simulation

I SAWs terminate quickly
I Consider a 2D lattice, a random walk with up, down, left, right

step has a 3.7% chance of finishing just after 4 steps
I How do we generate walks of lengths more than 1000?

46 / 107

Self avoiding random walks

I Adjust statistics to account for a less random selection
I If one of the three moves is blocked, we can still randomly

select one of the two open moves, but giving less weight to the
statistics computed for this walk

Computing weight w(N) for a walk of length N

I w(1) = 1, since we can always take the first step
I If all three moves are blocked w(N) = 0
I If all three moves are possible w(N) = w(N ≠ 1)
I If only m moves are possible, 0 < m < 3, then

w(N) = m
3 w(N ≠ 1), select one of the m possible moves at

random

Combining statistics over many walks

e
R

2
f

=
q

i wi(N)R2
iq

i wi(N)

47 / 107

Self avoiding random walks

I The strategy described in the previous slide gives us longer
walks, since we are able to avoid some terminations

I Walks with heigher weights are in a way healthier, we can make
more copies of these

I Compute ri = w(N)
Èw(N)Í . For a healthy walk, ri > 1.

I If ri > 1, make c copies of the walker and assign each of the
walkers weight w(N)

c
I The number of copies is given by c = min(ri, m), where m is

the possible number of moves
I If ri < 1 then the walker is removed with probability 1 ≠ ri

48 / 107

Applications of self avoiding random walks

Polymer physics

I A polymer consists of N repeated units, called monomers.
I Each monomer consists of a small number of tightly bound

atoms. Typically N is in the 103 to 105 range.
I For polymers of length N one of the important physical

properties is
+
R

2
N

,
, the mean squared end-to-end length of the

polymer

(From U. Reading, UK)

49 / 107

Generating Random Numbers

50 / 107

Random numbers

There are ways to generate truly random numbers, but these require
physical processes, those that we believe to be truly random.

I Physical processes are costly and there isn’t an easy way to
interface these with a computer.

I Physical process are not repeatable, so we can’t use the same
set of random numbers in several simulations for testing and
comparison. (Of course we can always save the random
numbers.)

51 / 107

Pseudo random numbers

Pseudo random numbers are generated using deterministic
techniques, but they appear to be random

We can always reproduce the same set of random numbers by using
the same starting conditions

We can also analyze them mathematically i.e. these numbers have
the same statistical properties as “truly” random numbers

52 / 107

Generating pseudo random numbers

All techniques produce random integers in the range 0 to m. We
can convert this number to a real number between 0 and 1 through
division by m.

1. Start with a number x0, often called the seed.
2. Use a function f(x) that generates the next number

xi+1 = f(xi)

Caveat

As soon as f returns a previously generated number, the sequence
repeats itself. This results in short sequences with bad statistical
properties.

53 / 107

Generating uniformly distributed random numbers

I Simplest type of random number generator
I Easy to analyze
I Good random number generators exist

It is possible to generate random numbers from other
distributions given uniformly distributed random numbers.

54 / 107

Linear Congruential Method (LCM)

One of the best random number generator is also the simplest

xi+1 = (axi + c) mod m,

where

I m, the modulus, m > 0.
I a, the multiplier, 0 < a < m.
I c, the increment, 0 Æ c < m.
I x0, the starting value, 0 Æ x0 < m.

Python code for LCM

def lcm(m, a, c, seed):
while True:

seed = (a * seed + c) % m
yield seed

55 / 107

Linear congruential method

I The quality of the random number generator depends heavily
on the choice of m, a and c

I The length of the sequence cannot exceed m, since there are
only m values less than m, so we want m to be as large as
possible

I Good values of a and c depend upon the value of m

I Rubric:
I c is relatively prime to m

I b = a ≠ 1 is a multiple of p, for prime p dividing m

I b is a multiple of 4, if m is a multiple of 4

56 / 107

Linear congruential method

LCM has been studied extensively for 50 years or so, and good
values for a, c and m are available.

! " #
134456 8121 28411

243000 4561 51349

259200 7141 54773

233280 9301 49297

714025 4096 150889

57 / 107

Generating longer random number sequences

In many simulations we often need billions of random numbers. So
how can we generate longer sequences. Recall LCM can only
produce sequences of length less than or equal to m.

The length of the sequence (after which the sequence repeats itself)
is called the period of the random number generator.

Shu�ing technique

The range of an LCM can be increased using a shu�ing technique.

58 / 107

Shu�ing technique

Procedure

1. Initialize k entries of array v with random values between 0 and
1.

2. Generate a random number y between 0 and m

3. Compute index j = k
y
m

4. Set r = v[j]
5. Generate a random number y between 0 and m

6. Set v[j] = y

7. Returns r

Properties

I If m is the sequence length produced by the base random
number generator then shu�ing will produce a sequence that is
several times m in length.

I Shu�ing also reduces any correlations that might exist in the
original sequence.

Fifteen
X

It
of slots

r 6

so Lem Xa

generate r

59 / 107

Tests for random numbers

General tests for randomness that can be used for any distributions

I Chi-Square test
I Kolmogorov-Smirnov test

60 / 107

Chi-Square test

I A statistical test commonly used to compare observed data
with data one would expect to obtain according to a specific
hypothesis

I Chi-Square test accepts or rejects the Null Hypothesis, which
states that there is no statistically significant di�erence
between the observed and the expected frequencies

61 / 107

Chi-Square Test

Consider the following table that shows the “expected” and
“observed” counts for some event

Elephants Zebras Antelopes
Expected (E) 10 20 15
Observed (O) 13 18 14

We want to confirm the Null Hypothesis, which states that there is
no statistically significant di�erence between the count of animals
that we observed and the number of animals that we were expecting
to observe.

62 / 107

Chi-Square Test

Compute test statistic ‰
2

‰
2 =

ÿ

i

(Oi ≠ Ei)2

Ei
,

where Oi is the observed count in bin i and Ei is the expected
count in bin i

Compute degrees of freedom d = #bins ≠ 1.

Find the critical value at the chosen significance level, often 0.05,
and the degrees of freedom.

If the ‰
2 is less than the critical value then the Null Hypothesis

stands.

63 / 107

Chi-square Test

Use the Chi-square table to find critical value at the chosen
significance level and the degrees of freedom.

Example
For our example: ‰

2(2) = 1.67 and d = 2. The critical value at
significance level 0.05 for degrees of freedom 2 is 5.991. Since ‰

2(2)
is less than the critical value, the Null Hypothesis stands.

Taken from https://onlinecourses.science.psu.edu/stat414/node/147

https://onlinecourses.science.psu.edu/stat414/node/147

64 / 107

Chi-Square Test

Another way to use Chi-Square test is to compute p-value as follows

p-value = P (X > ‰
2(d))

If p-value is less than then the level of significance (usually 0.05),
reject the Null Hypothesis.

65 / 107

Chi square test: p-values and –-values

A p-value is used in hypothesis testing. The smaller the p-value, the
stronger the evidence that you should reject the null hypothesis.

I p-value > 0.10: No evidence against the null hypothesis. The
data appear to be consistent with the null hypothesis.

I 0.05 < p-value < 0.10: Weak evidence against the null
hypothesis in favor of the alternative.

I 0.01 < p-value < 0.05: Moderate evidence against the null
hypothesis in favor of the alternative.

I 0.001 < p-value < 0.01: Strong evidence against the null
hypothesis in favor of the alternative.

I p-value < 0.001 Very strong evidence against the null
hypothesis in favour of the alternative

66 / 107

Chi square test: p-values and –-values

I Significance level is a measure of how certain you want to be
about your results: low significance values correspond to a low
probability that the experimental results happened by chance.

I Scientists usually set the significance level at 0.05, or 5 percent.
This means that experimental results have, at most, a 5%
chance of being reproduced in a random sampling process.

67 / 107

Apply Chi-square test to see if a coin is biased

Say we flipped a coin 51 times, and we got 28 heads and 23 tails.
These are observed frequencies. The expected number of heads and
tails for an unbiased coin, after 51 flips, is 25.5.

‰
2 = (28 ≠ 25.5)2

25.5 + (23 ≠ 25.5)2

25.5
= 0.516

Since for this experiment the number of outcomes is 2 (head or tail),
the degree of freedom is 2 ≠ 1 = 1. Using the table above we see
that the p-value is between 0.9 and 0.1 (corresponding the
‰

2
expected) values of 0.016 and 2.706. Consequently p-value is

greater than the level of significance, which we choose to be 0.05.
We accept the Null Hypothesis.

The coin is not biased.

68 / 107

Chi-square test for uniform random number generator

Given Yi the number of items in bin i, and pi the probability that an
item is placed in bin i, we compute Chi-Square statistics as follows:

‰
2 =

kÿ

i=1

(Yi ≠ npi)2

npi
,

where n is the number of items and k is the number of bins.

In the case of uniform random number generator, we expect that
the probability of falling in a bin is equally likely, i.e., pi = 1/k.

Apply the Chi square test with degree of freedom = k ≠ 1

KETAMINE
expected

69 / 107

Kolmogorov-Smirnov (KS) test

I The Kolmogorov-Smirnov (KS) test is a non-parametric test
used to determine whether a sample comes from a specific
distribution.

I It’s particularly useful when the distribution of the population is
unknown or when the data may not follow a normal
distribution.

I The KS test compares the empirical cumulative distribution
function (ECDF) of the sample with the cumulative
distribution function (CDF) of the specified distribution.
I The test statistic is the maximum absolute di�erence between

these two functions.

SEESNYEMIDTERM

70 / 107

Cumulative Distribution Function

FX(S) = Pr(X Æ x)

71 / 107

Calculate the empirical cumulative distribution function

(ECDF)

Given a set of n samples as {x1, x2, . . . , xn}

1. Sort in ascending order: x(1) Æ x(2) Æ . . . Æ x(n).
2. For each sample x(i), the cumulative probability F (x(i)) is the

proportion of samples that are less than or equal to x(i):

F (x(i)) =
Number of samples less than or equal to x(i)

n
= i

n
,

where i ranges from 1 to n.

This function gives the proportion of samples that are less than or
equal to a given value x.

72 / 107

Empirical CDF

The empirical CDF Fn(x) is defined as:

Fn(x) = 1
n

nÿ

i=1
1{xiÆx},

where 1{xiÆx} is an indicator function that equals 1 if xi Æ x and 0
otherwise.

73 / 107

Empirical CDF

Example: {1,23,5,54,3,2,46}
Sort samples in ascending order

{1, 2, 3, 5, 23, 45, 54}

Compute empirical CDF:

F (1) = 1/7, F (2) = 2/7, F (3) = 3/7, F (5) = 4/7, F (23) =
5/7, F (45) = 6/7, and F (54) = 7/7

1 1 41

6

74 / 107

Kolmogorov-Smirnov test

I We are given the cumulative distribution function FCDF

I Compute empirical cumulative probability distribution Fdata

from the sample data
I Compute KS statistic—the maximum absolute di�erence

between the empirical cumulative distribution function (ECDF)
and the specified cumulative distribution function (CDF):

D = max(|Fdata(x) ≠ FCDF(x)|),

where x ranges over all observed points
I Compute Dcritical (see table in the next slides), and if

D < Dcritical then the null hypothesis holds
I Find Dcritical by using the row for number of samples and

column for the significance level.

75 / 107

Kolmogorov-Smirnov test

76 / 107

Kolmogorov-Smirnov test

Example
Dcritical for 5 samples at 0.05 significance level is 0.565

77 / 107

Kolmogorov-Smirnov test

We can use KS test for testing uniform random number generators

I Generate N samples and estimate empirical CDF
I Use CDF for uniform distribution to compute KS statistic D

I Find Dcritical value using N bins and the desired significance
level

I If D < Dcritical, the Null Hypothesis stands

78 / 107

CDF for uniform distribution

Given X ≥ U(a, b)
CDF on support a < x < b is

F (x) =
⁄ x

a

1
b ≠ a

dw

= w

b ≠ a

x

a

Solving this we get

F (x) =

Y
__]

__[

0 x Æ a

x≠a
b≠a a < x < b

1 x Ø b

MIDINE PDF 1

44
a

CDF

79 / 107

Tests for uniformly distributed random numbers

I Equidistribution test
I Serial test
I Coupon collecter’s test
I Serial correlation test No

ON

MIDTERM

80 / 107

Equidistribution test

The equidistribution test is based on the fact that uniform random
integers should be evenly distributed amongst the possible integer
values

1. Chose some convenient d (not too large) and then generate a
sequence of random integers between 0 and d ≠ 1

2. Assign them to d bins based on their integer values (since the
numbers are uniformly distributed we would expect to find an
equal number of integers in each bin)

3. With a sequence of n numbers, we would expect to find n
d

integers in each bin, so we can use a Chi-square test. In this
case we have pi = 1

d , and the number of degrees of freedom is
d ≠ 1

4. Use Chi-square test

81 / 107

Serial test

Can be considered an extension of equidistribution test that
considers pairs of adjacent numbers.

Key idea

Given a sequence of random integers between 0 and d ≠ 1. Consider
a pair of adjacent numbers:

(Y2i, Y2i+1) .

Since each pair is equally probable, so the pairs should be evenly
distributed over d

2 bins.

82 / 107

Serial test

1. Generate a sequence of n random integers
2. Divide the sequence into n

2 pairs.
3. Each pair is assigned to one of the d

2 bins.
4. Apply Chi-square test. Probability for each bin is 1

d2 and the
degrees of freedom is d

2.

Caveat

I For this to work the sequence should be reasonable long (the
length should be at least 5d

2).
I This approach can be extended to higher dimensions. However,

it quickly becomes infeasible since the number of bins grow
very rapidly.

I Not practical beyond quadruples of random numbers.

83 / 107

Coupon collector’s test

I This test is also based on a sequence of integer random
numbers between 0 and d ≠ 1, but now we are interested in
collecting a complete set of integers between 0 and d ≠ 1, have
at least one of each

I In particular we are interested in the length of sequence r that
it takes to get the complete set

Procedure

I We start at the beginning of the sequence and keeping moving
down the sequence until we find a complete set of d integers
I The position where this occurs is called the sequence length

I We then move to the next item in the sequence and repeat the
process

I We are interested in the distribution of sequence lengths

84 / 107

Coupon collector’s test

I The following experession gives probabilities for sequences of
lengths n Ø 10

pn = 1
10n≠1

qÿ

j=0
(≠1)j

A
q

j

B

(q ≠ j)n≠1

I Use Chi-Square test to see if the observed sequence lengths
match those returned by the above expression

85 / 107

Spectral test

I One of the best tests for random number generators is the
Spectral test

I This test can only be applied to linear congruential random
number generators

I So far all random number generators that are known to be
good pass this test, and all that are known to be bad fail it

I This test is quite complicated, so we won’t examine the details,
only the basic ideas

I The test operates on the real random numbers sequence and it
examines all m numbers in the sequence

I The test starts by constructing t dimensional points out of the
sequence of random numbers. We construct m points as
follows:

(Un, Un+1, Un+2, · · · , Un+t≠1)
I A new point is constructed starting from each number, so each

number in the original sequence appears in t points.
Generally speaking t is between 2 and 6.

86 / 107

Spectral test

I Notice the pattern observed in the above figure
I “Real” random numbers when truncted exhibit the same pattern
I Grain of the random number generator

1
4 2

I

net

87 / 107

A note about the quality of random number generators

I These tests are applied to di�erent sequences generated by a
random number generator

I All sequences from a “good” generator will pass these tests
I In practice, however, some sequences even from a “good”

generator will fail some tests
I This behavior is also observed for “true” random number

sequences

88 / 107

Generating random numbers from uniform distributions

Given: uniform random number generator that return an integer U

between 0 and d.

Recipe to get a uniform random number r between a and b.

r = a + (b ≠ a)U

d

Recipe to get a uniform random number r between 0 and 1.

r = U

d

e

mm

89 / 107

Generating random numbers from non-uniform discrete

distributions

Say we want to generate samples form a following discrete
distribution: xi with probability pi, where i œ [0, n] and

q
i pi = 1.

Recipe

U = rand(0,1) # uniform random number between 0 and 1
if U < p[0]:

return x0
elif U < p[0]+p[1]:

return x1
...
else:

return xn

Elephant

lion Etta
zebra

1 feb
Elephant

7174

90 / 107

Generating random numbers from non-uniform discrete

distributions

We can also store the cumulative probabilities, so we don’t have to
compute probability sums eachtime as follows:

cj =
jÿ

i=0
pi,

where j œ [0, n].
Always keep the most likely choices (those with higher probabilities)
at the top. This saves a lot of “if” comparisons. Also allows us to
use binary search to find the correct bin.

Q

91 / 107

Generating random numbers from non-uniform discrete

distributions

Recipe Using cumulative probabilities

U = rand(0,1) # uniform random number between 0 and 1
if U < c[0]:

return x0
elif U < c[1]:

return x1
...
else:

return xn

PEO PE
E

92 / 107

Generating random numbers from non-uniform continuous

distributions

Cumulative probability distribution F (X) is used to generate
samples from non-uniform continuous distributions.

I F (≠Œ) = 0
I F (Œ) = 1
I 0 Æ F (x) Æ 1
I F (x1) Æ F (x2) if x1 Æ x2

LIKE
I

IT

Cor

93 / 107

Generating random numbers from non-uniform continuous

distributions

Consider the cumulative probability distribution
F (X) = Pr(x Æ X) (associated with probability distribution f(x),
where x is the random variable with distribution f(x)).
Insight
A uniform random number generator produces a random probability
and the value of F (X) is a probability, so the inverse of F (X) takes
the probability and returns a random number with probability f(X).

CDRNormalPDB
L

e
EEt

94 / 107

Generating random numbers from non-uniform continuous

distributions

Given F (X) = Pr(x Æ X) (associated with probability distribution
f(x), where x is the random variable with distribution f(x)).
If F

≠1(X) then it is straightforward to get a random number from
f(x) using the following recipe.

u = rand(0,1) # a uniform random number between 0 and 1

return F_inv(u)

The key challenge is that in many cases F
≠1 doesn’t exist.

Co inverted CDF function

95 / 107

Inverse of a function

Given a function f(x), you want to find the function f
≠1(x) such

that f
≠1(f(x)) = x for all x in the domain of f .

Here are the general steps to find the inverse of a function:

I Replace f(x) with y, so y = f(x)
I Swap x and y, so we get x = f

≠1(y)
I Solve for y

I Replace y with f
≠1(x)

I Make sure that the domain of the original function matches the
range of the inverse function, and vice versa.

y fire say ga f x

glton x

Fatt II
g fin x f gin a

3 96 7 a

396 x 7

gen

7

1 31 7

2 3y
n 7

f a

96 / 107

Inverse of a function

I Not all functions have inverses.
I The inverse of a function may need to be restricted to a certain

domain in order to be a function. This restriction ensures that
the inverse function is one-to-one.

I For some functions, finding the inverse may not be
straightforward or even possible using elementary functions. In
such cases, numerical methods or special techniques may be
required to approximate or find the inverse.

97 / 107

Exponential distribution - PDF

Exponential distributions, for example is used in nuclear decay — if
a substance emits a particle every µ seconds on average, then the
times between two emissions will be exponentially distributed with
mean µ.

The probability density function (PDF) of the exponential
distribution is

f(x) = ⁄e
≠⁄x for x Ø 0,

where ⁄ is the rate parameter. µ and ⁄ are related as follows

⁄ = 1
µ

k

98 / 107

Exponential distribution - CDF

To find the cumulative distribution function (CDF), F (x), we
integrate the PDF from 0 to x:

F (x) =
⁄ x

0
⁄e

≠⁄t
dt

=
Ë
≠e

≠⁄t
Èx

0
= 1 ≠ e

≠⁄x

At_

99 / 107

Generating random numbers from exponential distributions
F

≠1(x) for cumulative probability distribution for exponential
distribution is

F
≠1(x) = ≠ 1

⁄
ln(1 ≠ U)

ln is slow; however, this approach is acceptable unless we plan to
generate a very large number of samples. U is a uniform random
number between 0 and 1.

114 Q

a 1 e
FGM
1 e 9

e 9th _a

flu
go In 1 4

glad 2 flu 1 A

100 / 107

Generating samples from normal distribution

One of the most used probability distribution

101 / 107

Generating samples from normal distribution

We will focus on generating samples form normal distribution of
mean (µ) 0 and variance (‡2) 1.

It is easy to generate samples from normal distribution N(µ, ‡) as
follows:

1. n ≥ N(0, 1) (a random number generated from a uniform
distribution with mean 0 and variance 1)

2. µ + ‡n ≥ N(µ, ‡)

102 / 107

Generating samples from normal distribution

Cumulative probability distribution for N(0, 1) is

F (x) = 1Ô
2fi

⁄ Œ

≠Œ
e

≠ t2
2 dt

In this case it is F (x) is invertible; however, it is not easy to
compute.

We will look at two other approaches (for generating numbers from
normal distribution) that give acceptable results.

103 / 107

Generating samples from normal distribution

We will use the rejection method to generate samples from a normal
distribution

Rejection method

1. Generate a sample and check to see if it is from the desired
distribution.

2. If yes, return the sample.
3. Else, try again.

The trick is to guess the correct samples more frequently, to avoid
having to generate many samples.

104 / 107

Polar method for generating samples from normal

distribution

1. Generate two uniform random numbers U1 and U2
2. Set V1 = 2U1 ≠ 1 and V2 = 2U2 ≠ 1
3. Compute S = V

2
1 + V

2
2

4. If S Ø 1 return to step 1
5. Else compute

X1 = V1

Û
≠2 ln S

S

and

X2 = V2

Û
≠2 ln S

S

6. Return X1 and X2

105 / 107

Polar method for generating samples from normal

distribution

I This method produces two samples
I The downside is that the method uses logarithm and square

root operations, which are expensive
I The polar method needs a random point (V1, V2) distributed on

a circle with radius 1. This is hard to generate, but it is easy to
generate a random point within a square. So we use the
smallest square containing the circle and generate a random
point within this square. If this point is also within the circle
we continue, otherwise we generate another point.

106 / 107

Ratio method for generating samples from normal

distribution

1. Generate two uniform random numbers U1 and U2
2. Set X =

Ò
8
2e

(U2≠ 1
2)

U1

3. If X
2 Æ 5 ≠ 4e

1
4 U1 return X

4. If X
2 Ø 5 ≠ 4e

≠1.35
U1 + 1.4 go back to step 1

5. If X
2 Æ ≠ 4

ln U1
return X

6. Go back to step 1

Steps 2 and 3 are optional, but they increase the e�ciency of the
algorithm considerably. In this case we only produce one random
number, but we avoid using logarithm most of the time, so it could
be more e�cient than the polar method. Again we generate a pair
of random numbers, and then check to see if they produce the right
result, otherwise we try again.

107 / 107

Summary

I Monte Carlo techniques
I Random walks
I Techniques for generating and testing sequences of random

numbers
I Applications of random walks

