RECAP Continuous Systems Simulations Ordinary differential equations $\frac{d\pi}{dt^2} = 2$ t (usually time) is the independent variable Solving adres (Integration). 1. Integrate once $\frac{dx}{dt} = 2t + C_{1}$ 2. Intégrale again $x = t + C_1 t + C_2$ We can use this equation to find the value of x at specific values of t. However, we do not know the values of C, and C2. Constants of mlégration: Use mitial condition's x(o) = 7 $\frac{dx}{dt}(0) = 3$

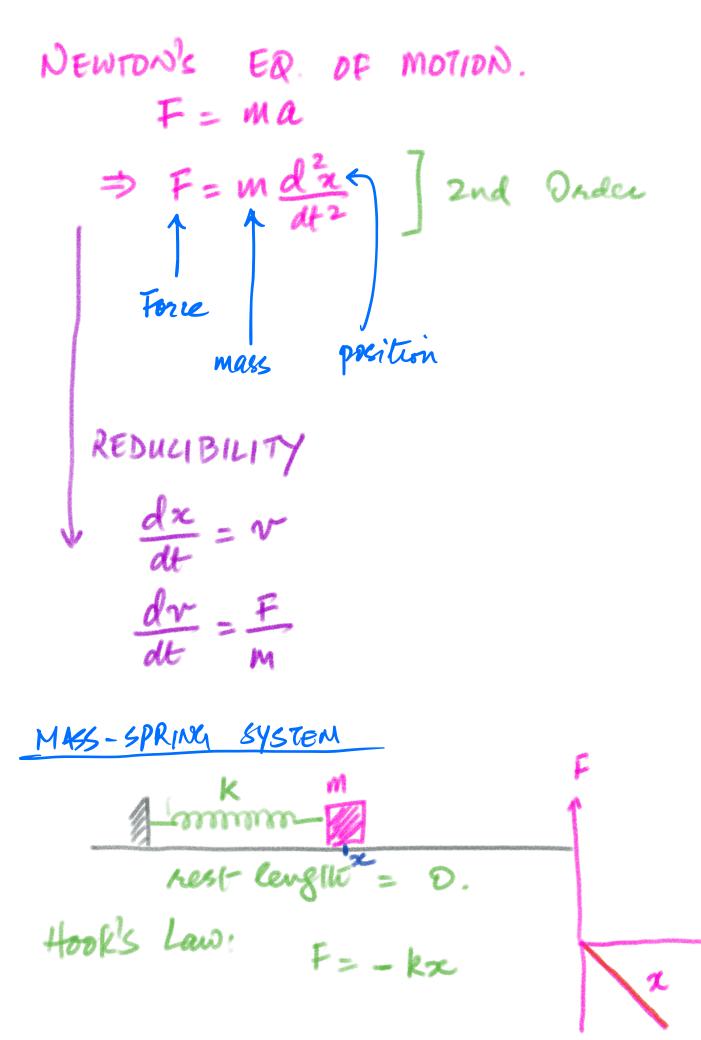
DR

boundary conditions

$$x(0) = 7$$

 $x(72) = -3$
To solve for c, and c2.
Reduichility
Replace a single NT-order DDE with
N 18t-order DDEs.
Ex.
 $dx^2 = -g^2 2ud$ x^2
 $dt^2 = -g^2 2ud$ x^2
 $dt^2 = -g^2 2ud$ x^2
 $dt^2 = -g^2$
Can be re-unitler as
 $dx = v^2$
 $dt = -g^2$
We can write the update rules as follows
 $\Delta x = v^2 \Delta t$ using the two
 $\Delta v = -g \Delta t$ 1st-order equations
 $dveleped$ above.

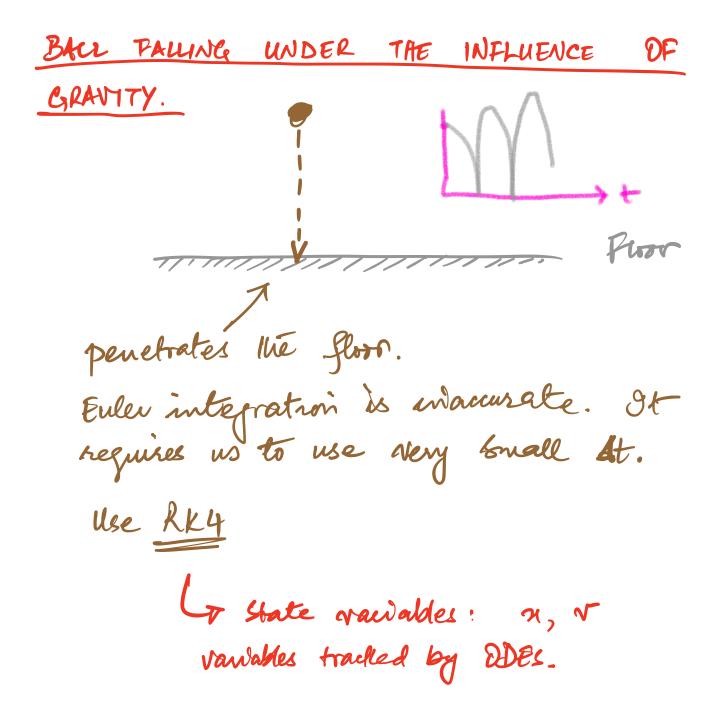
But we are intersected in finding the
values of
$$x$$
 and v for a specific time t
This is what we really need;
however, we cannot compute
it without also knowing v .
 $x(t+ab) = x(t) + v(t) \Delta t$
 $v(t+ab) = v(t) - g \Delta t$
 \int
 $current values for x and v
Updated values for x and v lefter
time Δt)
Initialization : $t=0$, $x(0)$, $v(0)$
do
compute $x(t+at)$, $y(t+at)$
 $t = t + \Delta t$
while (1); choice of Δt .$

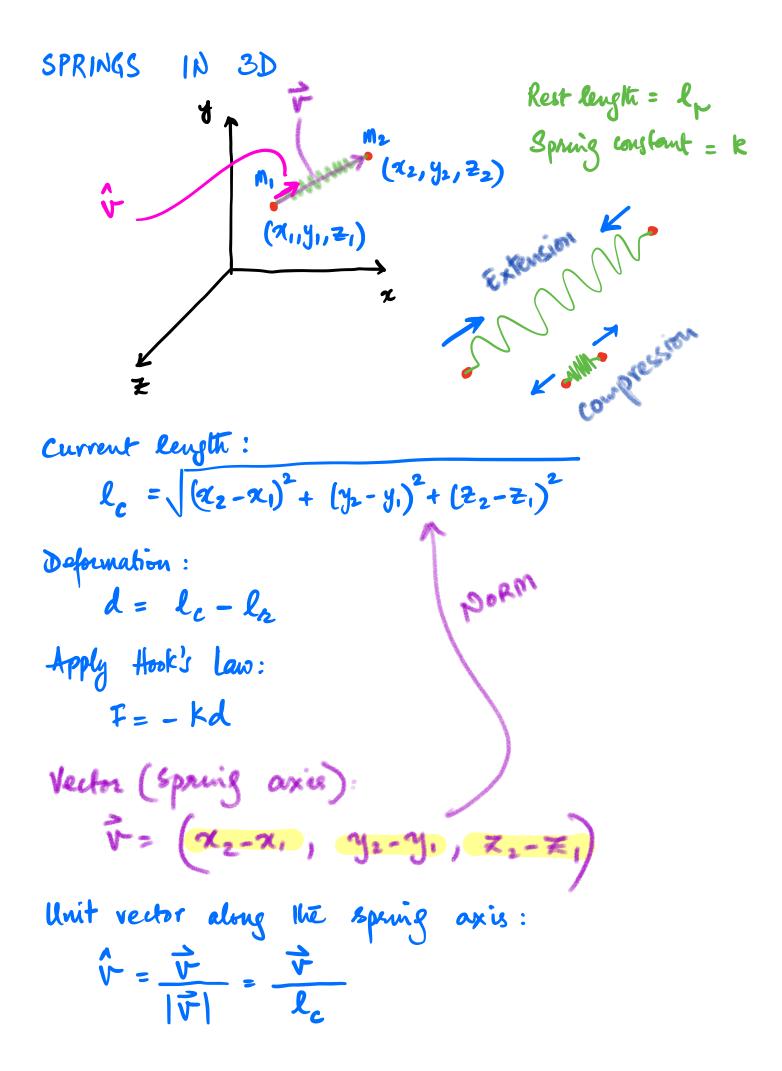


Use this to <u>capture</u> the position of mass mover time.

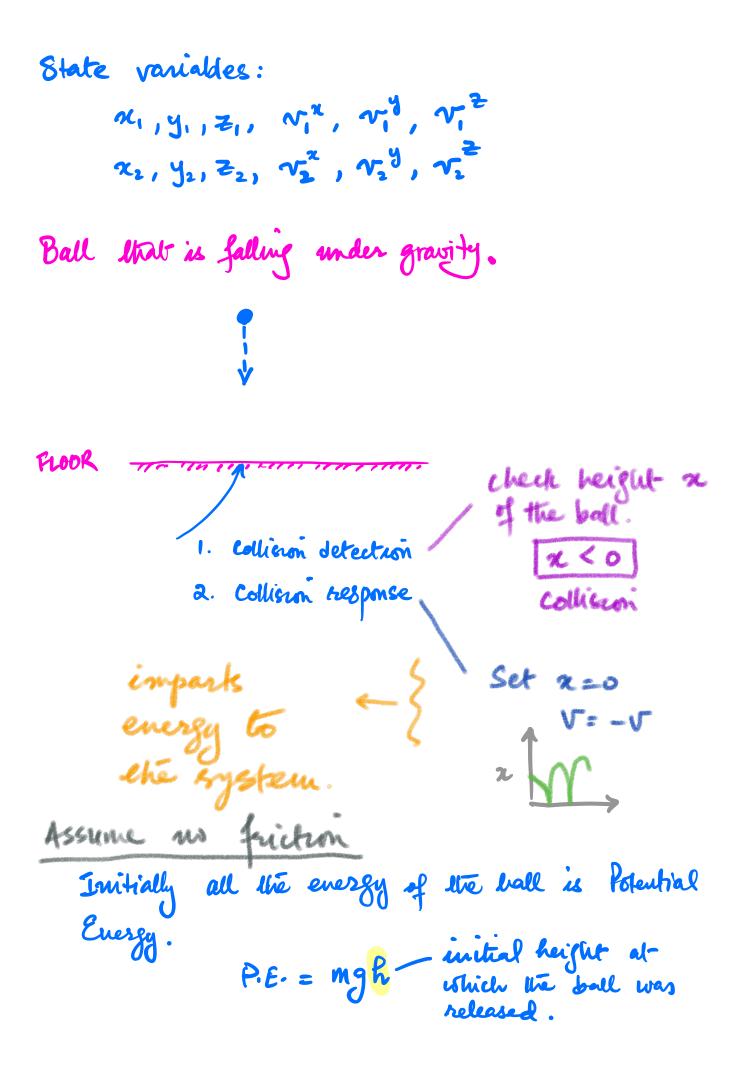
$$\frac{dx}{dt} = v^{-}$$

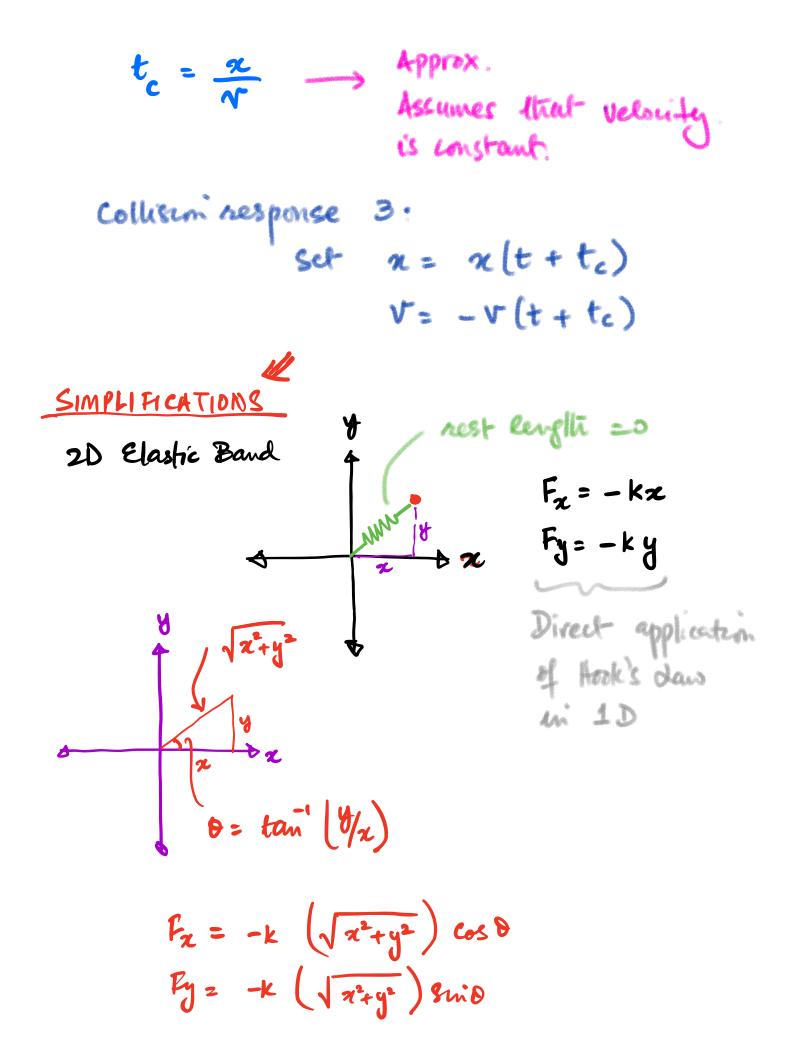
$$\frac{dv}{dt} = \frac{-kx}{M}$$

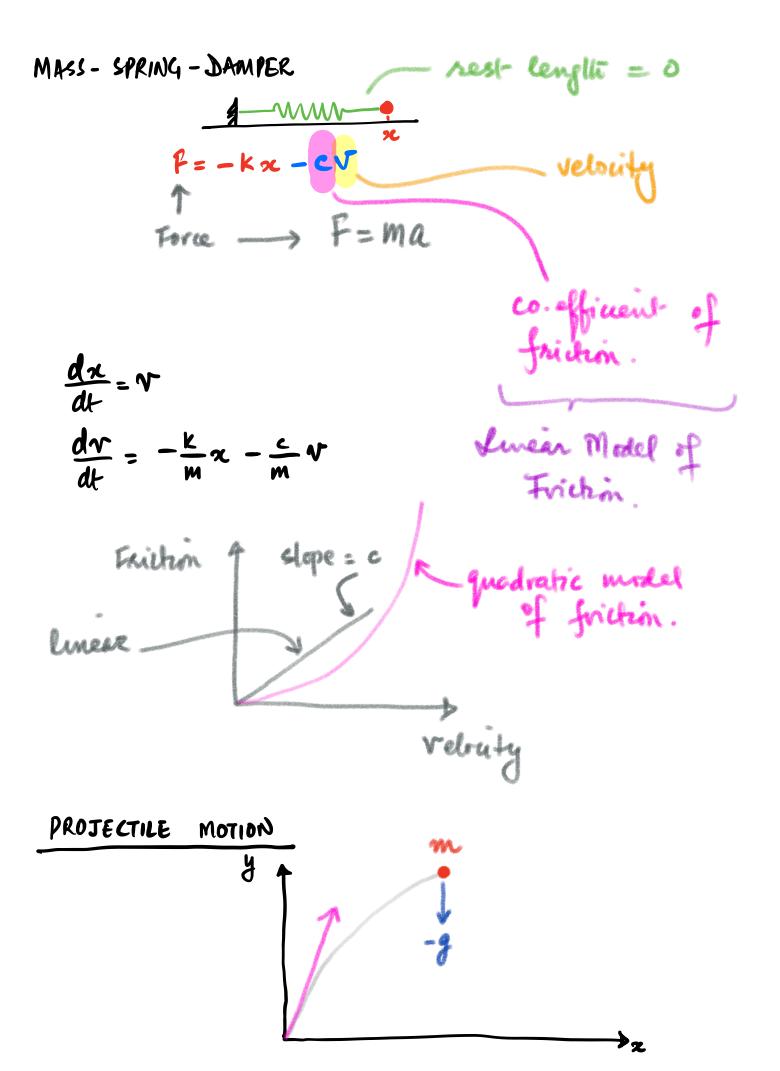


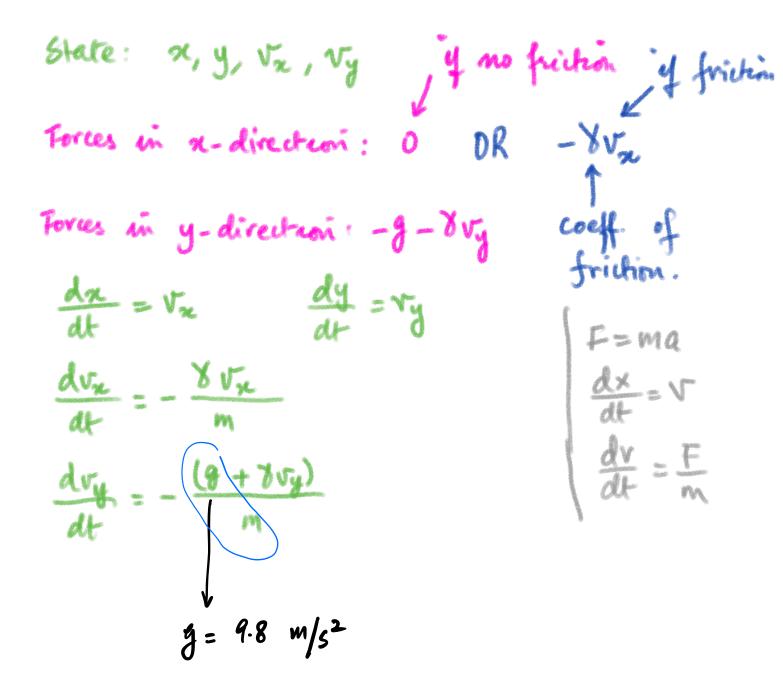


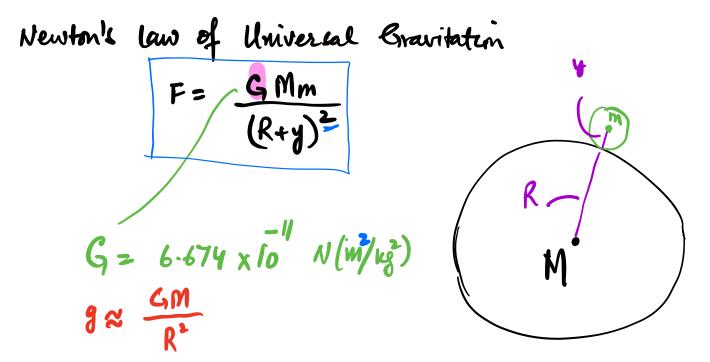
Force on mass
$$m_1$$
:
 $F_1 = + k d \hat{v} \in \mathbb{R}$
 $F_1 = + k d \hat{v} \in \mathbb{R}$
Force on m_1 is
 $d = 0$ if compressed.
Force on mass m_2 :
 $F_2 = - k d \hat{v} \in \mathbb{R}$
ASIDE: Eq. of Motion in dD
 $F = Ma$
 $\Rightarrow \frac{d^2x}{dt} = \frac{F}{m}$
 $\Rightarrow \frac{d^2x}{dt} = \frac{F}{m}$
 $\Rightarrow \frac{d^2x}{dt} = \frac{F}{m}$
 $ext{ Velocity if mass m_1 :
 $\frac{dv}{dt} = \frac{F}{m}$
Apply in 3D
For mass m_1 :
 $\frac{dv^2}{dt} = \frac{+kd\hat{v}^2}{m_1}$
 $\frac{dv_1}{dt} = \frac{+kd\hat{v}^2}{m_1}$
 $\frac{dv_1}{dt} = \frac{v}{k}$
 $\frac{dv^2}{dt} = \frac{-kkd\hat{v}^2}{m_1}$
 $\frac{dv_1}{dt} = \frac{v}{k}$
Use will while the 6 equations for m_2 .$

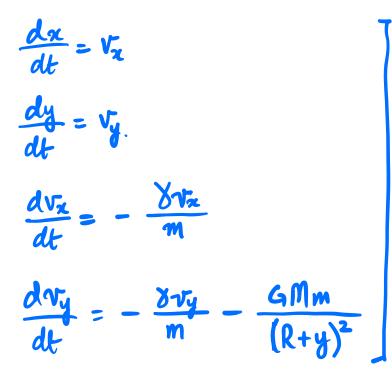












we cannot solve this analytically.