Rigid Bodies

Simulation and Modeling (CSCI 3010U)

Faisal Z. Qureshi
http://vclab.science.ontariotechu.ca

Rigid Bodies

Particle

Rigid Body

Particle vs. Rigid Body Dynamics

- State of a particle
- Position p
- Velocity \mathbf{V}
- State of a rigid body
- Position p
- Velocity \mathbf{v}
- Orientation θ
- Angular velocity ω

Coordinate frames

- $[\mathbf{x}]_{e}$ is $(1,2)$ in coordinate frame described by \mathbf{e}_{1} and \mathbf{e}_{2}
- What is $[\mathbf{x}]_{u}$, i.e., $[\mathbf{x}]_{u}$ expressed in \mathbf{u}_{1} and \mathbf{u}_{2} ?

Coordinate frames

- $\mathbf{x}=\mathbf{e}_{1}+2 \mathbf{e}_{2}$
- $\mathbf{x}=\left[\mathbf{u}_{0}\right]_{e}+\alpha\left[\mathbf{u}_{1}\right]_{e}+\beta\left[\mathbf{u}_{2}\right]_{e}$
- Note that $[\mathbf{x}]_{u}=(\alpha, \beta)$, so we are interested in finding values of α and β.

Coordinate frames

$$
\begin{aligned}
{\left[\mathbf{u}_{0}\right]_{e}+\alpha\left[\mathbf{u}_{1}\right]_{e}+\beta\left[\mathbf{u}_{2}\right]_{e} } & =[\mathbf{x}]_{e} \\
\alpha\left[\mathbf{u}_{1}\right]_{e}+\beta\left[\mathbf{u}_{2}\right]_{e} & =[\mathbf{x}]_{e}-\left[\mathbf{u}_{0}\right]_{e} \\
{\left[\begin{array}{ll}
{\left[\mathbf{u}_{1}\right]_{e}} & \left.\left[\mathbf{u}_{2}\right]_{e}\right]
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] } & = \\
{\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] } & =\left[\begin{array}{ll}
{\left[\mathbf{u}_{1}\right]_{e}} & \left.\left[\mathbf{u}_{2}\right]_{e}\right]^{-1}\left([\mathbf{x}]_{e}-\left[\mathbf{u}_{0}\right]_{e}\right)
\end{array}\right.
\end{aligned}
$$

Change of basis

$$
[\mathbf{x}]_{u}=\left[\begin{array}{ll}
{\left[\mathbf{u}_{1}\right]_{e}} & {\left[\mathbf{u}_{2}\right]_{e}}
\end{array}\right]^{-1}\left([\mathbf{x}]_{e}-\left[\mathbf{u}_{0}\right]_{e}\right)
$$

Coordinate Frames Exercise - Part 1

What is $[\mathrm{x}]_{u}$?

Coordinate Frames Exercise - Part 2

What is $[\mathrm{x}]_{u}$?

Rigid Bodies in 2D

Angular Velocity

- $\omega=\frac{d \theta}{d t}$
- Units are radians per second
- Radian is the angle subtended by an arc whose length is equal to its radious: $\theta=\frac{l}{r}$

Linear Velocity at a Point on the Body

- $\mathbf{v}=\mathbf{r} \omega$

Rigid Bodies in 3D

- Unlike 2D, orientation in 3D cannot be described using any angle.
- There are many schemes for describing rotations in 3D.
- We will use a 3×3 rotation matrix \mathbf{R} to describe the rotation of rigit body.
- \mathbf{R} is an orthognal matrix
- Its columns are orthonormal, ie., $\mathbf{r}_{i}^{T} \mathbf{r}_{j}=0$ if $i \neq j, 1$ otherwise, where \mathbf{r}_{i} and \mathbf{r}_{j} denotes $i^{\text {th }}$ and $j^{\text {th }}$ columns, respectively
- $\mathbf{R}^{T} \mathbf{R}=\mathbf{I}$ and $\mathbf{R R}^{T}=\mathbf{I}$

$$
\left[\begin{array}{ll|l}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \quad \begin{gathered}
\left(r_{11}, r_{21}, r_{31}\right) \cdot\left(r_{11}, r_{21}, r_{31}\right)=1 \\
r_{11}{ }^{2}+r_{31}{ }^{2}+r_{31}{ }^{2}=1 \\
\downarrow \cdot \downarrow=0
\end{gathered}
$$

Rotations in 3D

Matrices for rotations about the x, y, and z axes

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Rotations in 3D

It is possible to describe a rotation as a sequence of three rotations around $X Y Z$ coordinate frame axes attached to the moving body

Then rotation matrix $\mathbf{R}=R_{z}(\gamma) R_{x}(\theta) R_{y}(\beta)$
Here, $X Y Z$ coordinate system that is attached to the body moves, while the $x y z$ system is fixed. The rotations are with respect to the $X Y Z$ coordinate system. It is also possible to define these (elemental) rotations about the axes of a fixed coordinate system $x y z$.

Rotations in 3D

Another way to represent a rotation in 3D is to use the axis-angle convention.

The matrix of a proper rotation R by angle θ around the axis $\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right)$

$$
R=\left[\begin{array}{ccc}
\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\
u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\
u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{z}^{2}(1-\cos \theta)
\end{array}\right]
$$

Rotations in 3D

- We will use a 3×3 rotation matrix \mathbf{R}
- We need to find the relationship between angular velocity and rotation matrix.

We will return to this later.

Equations of Motions for Rigid Bodies

Force acting on a Rigid Body

- Net force acting on an object is the rate of change of its linear momentum.
- Linear momentum: $\mathbf{P}=\frac{\frac{d \mathbf{P}}{d t}=\mathbf{F}}{m \mathbf{v}}$, where m is the mass of the object and \mathbf{v} is its linear velocity

Equations of Motions for Rigid Bodies

Torque acting on a rigid body

- Net torque acting on an object (about point \mathbf{o}) is the rate of change of its angular momentum .

$$
\frac{d \mathbf{L}}{d t}=\stackrel{\mathbf{N}}{=} \text { torque }
$$

- Angular momentum: $\mathbf{L}=\mathbf{I} \omega$, where \mathbf{I} is the inertia tensor and ω is its angular velocity (about point \mathbf{o})

Torque

- Torque (in this example, clockwise or counter-clockwise):

$$
\mathbf{T}=\underline{\mathbf{d} \times \mathbf{F}} \quad \text { Vector cross-product }
$$

- When force passes through the center of mass, the associated d vector is zero; therefore, this force produces no torque or rotational effect

$$
\begin{aligned}
\vec{a} & =\left(a_{x}, a_{y}, a_{z}\right) \\
\vec{b} & =\left(b_{x}, b_{y}, b_{z}\right) \\
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
i & j & k \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \\
& =i\left(a_{y} b_{z}-b_{y} a_{z}\right)
\end{aligned}
$$

Center of Mass (COM)

- The center of mass is the mean location of all the mass of the body.
- The center of mass \mathbf{r} is defined as

$$
\begin{aligned}
r_{x} & =\frac{1}{M} \int \rho(x, y, z) x d V \\
r_{y} & =\frac{1}{M} \int \rho(x, y, z) y d V \\
r_{z} & =\frac{1}{M} \int \rho(x, y, z) z d V
\end{aligned}
$$

where $\rho(x, y, z)$ is the density at point $(x, y, z) . M$ is the total mass of the object. Also, density $=\frac{\text { mass }}{\text { volume }}$.

COM as the origin of the body coordinate frame

- Selecting COM as the origin of the body coordinate frame greatly simpifies the equation of motions
- Any force applied to (or passing through) the COM doesn't induce rotation.

Force 2

- Force 1 (translation only)
- Force 2 (translation only)
- Force 3 (both translation \& rotation)

COM - Discretization

Consider a rigid body composed of N point masses m_{i} located at positions (x_{i}, y_{i}, z_{i}), respectively, in the world coordinate system. Here $i \in[1, N]$.

Then the center of mass of this rigid body in the world coordinate system is

world coordinates

$$
\left\{\begin{array}{l}
r_{x}=\left(\sum_{i} m_{i} x_{i}\right) /\left(\sum_{i} m_{i}\right) \\
r_{y}=\left(\sum_{i} m_{i} y_{i}\right) /\left(\sum_{i} m_{i}\right) \\
r_{z}=\left(\sum_{i} m_{i} z_{i}\right) /\left(\sum_{i} m_{i}\right)
\end{array}\right.
$$

COM - Exercise

Compute the center of mass of a rectangular brick with point masses at its 8 vertices. Assume that vertex 1 is sitting at $(1,1,1)$. The values of point masses are m_{i}, where $i \in[1,8]$.

Let's assume that $l=4, h=1, d=2$ and $m_{i}=1$ to get things started.

COM - Exercise - Python Code

```
import numpy as np
```



```
m = np.ones(8)
```

m = np.ones(8)
r = np.empty((3,8))
r = np.empty((3,8))
l = 4
h = 1
d = 2

```
\# A
\# B
\# C
\# D
\# E
\# F
\# G
\# H

print ('m: \n', m)
print ('r:\n', r)
```

M = np.sum(m) \# Total mass
print('M:\n', M)
m_tmp = np.tile(m, (3,1))
print(r * np.tile(m, (3,1)))
center_of_mass =
np.sum(r * np.tile(m, (3,1)), axis=1) / M
print('center of mass:\n', center_of_mass)

```
```

r[:,0] = np.array([1,1,1])
r[:,1] = r[:,0] + np.array([l,0,0])
r[:,2] = r[:,0] + np.array([l,h,0])
r[:,3] = r[:,0] + np.array([0,h,0])
r[:,4] = r[:,0] + np.array([0,0,-d])
r[:,5] = r[:,4] + np.array([1,0,0])
r[:,6] = r[:,4] + np.array([1,h,0])
r[:,7] = r[:,4] + np.array([0,h,0])

```

\section*{COM - Example - Program Output}
m:
```

 [1. 1. 1. 1. 1. 1. 1. 1.]
 r:
[[1. 5. 5. 1. 1. 5. 5. 1.]
[1. 1. 2. 2. 1. 1. 2. 2.]
[1. 1. 1. 1. -1. -1. -1. -1.]]
M:
8.0
[[1. 5. 5. 1. 1. 5. 5. 1.]
[1. 1. 2. 2. 1. 1. 2. 2.]
[1. 1. 1. 1. -1. -1. -1. -1.]]
center of mass:

```
    [3. 1.50 . ]

\section*{Inertia Tensor}

Inertia tensor provides a concise description of the mass distribution around the center of mass. \(\rho(x, y, z)\) denotes density at center-of-mass centered point \((x, y, z)\). Recall density \(=\frac{\text { mass }}{\text { volume }}\).
\[
\begin{aligned}
& I_{x x}=\int \rho(x, y, z)\left(y^{2}+z^{2}\right) d V \\
& I_{y y}=\int \rho(x, y, z)\left(z^{2}+x^{2}\right) d V \\
& I=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & -I_{z y} & I_{z z}
\end{array}\right] \\
& I_{z z}=\int \rho(x, y, z)\left(x^{2}+y^{2}\right) d V \\
& I_{x y}=I_{y x}=\int \rho(x, y, z) x y d V \\
& I_{x z}=I_{z x}=\int \rho(x, y, z) x z d V \\
& I_{y z}=I_{z y}=\int \rho(x, y, z) y z d V
\end{aligned}
\]

\section*{Inertia Tensor - Discretization}

Consider a rigid body composed of \(N\) point masses \(m_{i}\) located at center-of-mass centered positions \(\left(x_{i}, y_{i}, z_{i}\right)\), respectively, in the world coordinate system. Here \(i \in[1, N]\).
\[
I=\left[\begin{array}{rl}
I_{x x} & =\sum_{i} m_{i}\left(\underline{y_{i}^{2}+z_{i}^{2}}\right) \\
I_{y y} & =\sum_{i} m_{i}\left(\underline{z_{i}^{2}+x_{i}^{2}}\right) \\
-I_{y x} & -I_{x y} \\
-I_{y y} & -I_{x z} \\
-I_{z x} & -I_{z y}
\end{array} I_{z z}\right] \quad I_{z z}=\sum_{i} m_{i}\left(\underline{x_{i}^{2}+y_{i}^{2}}\right)
\]

\section*{Inertia Tensor - Exercise}

Compute the center of mass of a rectangular brick with point masses at its 8 vertices. Assume that vertex 1 is sitting at \((1,1,1)\). The values of point masses are \(m_{i}\), where \(i \in[1,8]\).


Let's assume that \(l=4, h=1, d=2\) and \(m_{i}=1\) to get things started.

\section*{Inertia Tensor - Exercise - Python Code}
```


continued from the previous example

rp = r - np.tile(center_of_mass , (8,1)).T
print('rp:\n', rp)
I = np.empty((3,3))
I[0,0] = np.sum(np.multiply(np.power(rp[1,:],2) + np.power(rp[2,:],2), m))
I[1,1] = np.sum(np.multiply(np.power(rp[2,:],2) + np.power(rp[0,:],2),m))
I[2,2] = np.sum(np.multiply(np.power(rp[0,:],2) + np.power(rp[1,:],2),m))
I[0,1] = I[1,0] = np.sum(np.multiply(np.multiply(rp[0,:], rp[1,:]), m))
I[0,2] = I[2,0] = np.sum(np.multiply(np.multiply(rp[0,:], rp[2,:]), m))
I[1,2] = I[2,1] = np.sum(np.multiply(np.multiply(rp[1,:], rp[2,:]), m))
print('I:\n', I)

```

\section*{Intertia Tensor - Exercise - Program Output}
```

rp:
[[-2. 2. 2. -2. -2. 2. 2. -2.]
[-0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 0.5]
[1. 1. 1. 1. -1. -1. -1. -1.]]
I:
[[10. 0. 0.]
[0. 40. 0.]
[0. 0. 34.]]

```

\section*{Inertia Tensor in the Body Coordinate Frame}
- The inertia tensor I that we just computed is expressed in the world coordinate frame. Consequently it changes as the orientation of the rigid body changes.
- We can express the inertia tensor in the body coordinate frame.
- We refer to inertia tensor in the body coordinate frame as \(\mathbf{I}_{b o d y}\).
- \(\mathbf{I}_{\text {body }}\) doesn't change as the orientation of the body changes.
- \(\mathbf{I}_{b o d y}\) is diagonal, ie.,
\[
\begin{aligned}
& \text { i.e., } \mathbf{I}_{b o d y}=\left[\begin{array}{ccc}
I_{11} & 0 & 0 \\
0 & I_{22} & 0 \\
0 & 0 & I_{33}
\end{array}\right] \begin{array}{l}
\text { means value } I_{11} \\
x \text {-axis coll be bound } \\
\text { slow compared to } \\
\text { other axes for a }
\end{array}
\end{aligned}
\] similar force.
\[
\mathbf{I}_{b o d y}^{-1}=\left[\begin{array}{ccc}
\frac{1}{I_{11}} & 0 & 0 \\
0 & \frac{1}{I_{22}} & 0 \\
0 & 0 & \frac{1}{I_{33}}
\end{array}\right]
\]

\section*{Computing \(\mathbf{I}_{b o d y}\)}

Option 1
Diagonalize I
- Compute eigenvectors and eigenvalues of \(\mathbf{I}\)
- Eigenvalues form the diagonal matrix \(\mathbf{I}_{b o d y}\)
- Eigenvectors form the 3-by-3 rotation matrix \(\mathbf{R}\) that describes the orientation of the rigid body
- This is the preferred approach

Option 2
Use 3-by-3 rotation matrix \(R\) that describes the orientation of the rigid body
- \(\mathbf{I}_{b o d y}=\mathbf{R}^{T} \mathbf{I R}\)


\section*{Inertia Tensor - Rotated Body Example - Python Code}
```


Continued from previous example

from scipy.spatial.transform import Rotation as R
rot_mat = R.from_euler('y',45, degrees=True).as_matrix()
print('rot_mat:\n', rot_mat)

Note: 1) rp; 2) center of mass; and 3) overwriting r

r = np.dot(rot_mat, rp) + np.tile(center_of_mass, (8,1)).T
print('rotated_r:\n', r)
center_of_mass = np.sum(r * np.tile(m, (3,1)), axis=1) / M
print('center of mass:\n', center_of_mass)
rp = r - np.tile(center_of_mass , (8,1)).T
print('rp:\n', rp)
I = np.empty((3,3))
I[0,0] = np.sum(np.multiply(np.power(rp[1,:],2) + np.power(rp[2,:],2),m))
I[1,1] = np.sum(np.multiply(np.power(rp[2,:],2) + np.power(rp[0,:],2),m))
I[2,2] = np.sum(np.multiply(np.power(rp[0,:],2) + np.power(rp[1,:],2),m))
I[0,1] = I[1,0] = np.sum(np.multiply(np.multiply(rp[0,:], rp[1,:]), m))
I[0,2] = I[2,0] = np.sum(np.multiply(np.multiply(rp[0,:], rp[2,:]), m))
I[1,2] = I[2,1] = np.sum(np.multiply(np.multiply(rp[1,:], rp[2,:]), m))
I[1,2] = I[2,1]

```

# Computing I_body using rotation matrix
I_body = np.dot(np.dot(rot_mat.T, I), rot_mat)
```



```
# Computing I_body using eigenvalues and eigenvectors
w, v = np.linalg.eig(I)
print('eigenvalues:\n', w)
print('eigenvectors:\n', v)
```


Inertia Tensor - Rotated Body Example - Program Output

rot_mat:

[[0.70710678	0.
$[0$.	1.
$[-0.70710678$	0.

rotated_r:
[[2.29289322 5.12132034

$\operatorname{ly}(15)$

$3.707106780 .87867966]$
$\begin{array}{lll}{[1 .} & 1 . & 2\end{array}$
. 2 .
0.87867966
3.70710678
2. 2 .]
[$2.12132034-0.70710678-0.70710678$
2.12132034
0.70710678
1.
-2.12132034 0.70710678]]
center of mass:
[3. 1.50 .]
rp:
$\left[\begin{array}{lllllll}-0.70710678 & 2.12132034 & 2.12132034 & -0.70710678 & -2.12132034 & 0.70710678\end{array}\right.$
$0.70710678-2.12132034]$
$\begin{array}{lll}-0.5 & -0.5 & 0.5\end{array}$
]
$\left[\begin{array}{lllllll}2.12132034 & -0.70710678 & -0.70710678 & 2.12132034 & 0.70710678 & -2.12132034\end{array}\right.$
-2.12132034 0.70710678]]
I:
[[22. 0. - 12.]
$\left[\begin{array}{lll}0 . & 40 . & 0 .]\end{array}\right]$
$\left[\begin{array}{lll}-12 . & 0 . & 22 .]\end{array}\right.$
I_body:
[[3.40000000e+01 $0.00000000 \mathrm{e}+008.45096405 \mathrm{e}-15]$
[0.00000000e+00 $4.00000000 \mathrm{e}+010.00000000 \mathrm{e}+00]$
[7.79029649e-15 $0.00000000 \mathrm{e}+001.00000000 \mathrm{e}+01]$]
eigenvalues:
[34. 10. 40.]
eigenvectors:
$\left[\begin{array}{llll}{[} & 0.70710678 & 0.70710678 & 0 .\end{array}\right.$
$\left[\begin{array}{lll}0 . & 0 . & 1 .\end{array}\right.$
[-0.70710678
$0.70710678 \quad 0$.

Inertia Tensor

- Inertia tensors are available for many canonical objects: rectangles, circles, spheres, etc.
- Efficient algorithms exist to compute inertia tensor, center of mass, body coordinate frames a given polygonal model of an object
- Many tools exist to construct polygonal models of 2D/3D rigid objects

Body coordinate frame

Attach a coordinate frame to a rigid body

- Origin: center of mass(defined in the world frame)
- Axes: defined in the world coordinate frame by a 3 -by- 3 rotation matrix \mathbf{R}.
 Columns of \mathbf{R} define the x, y and z axes of the body coordinate frame
- Inertia tensor $\mathbf{I}_{b o d y}$ is constant and diagonal in this frame
- From body coordinate frame to world coordinate frame

$$
\begin{aligned}
& \mathbf{p}_{\text {world }}=\mathbf{R p}_{\text {body }}+\mathbf{x} \\
& P_{\text {body }}=R^{\top}\left(P_{\text {world }}-\mathbf{x}\right)
\end{aligned}
$$

World and Body Coordinate Frames

World coordinate frame

- Collision detection and response
- Display and visualization

Body coordinate frame

- Compute quantitites such as inertia tensor once and store them for later use.

Rigid Body Dynamics

State variables

Position	\mathbf{x}	1 by 3 vector
Orientation	R	3 by 3 rotation matrix
Linear Momentum	\mathbf{P}	1 by 3 vector
Angular Momentum	\mathbf{L}	1 by 3 vector

Constants

Mass	m	scalar
Inertia tensor	$I_{\text {body }}$	3 by 3 matrix (in body frame)

Derived quantities

Linear velocity	v	1 by 3 vector
Angular velocity	ω	1 by 3 vector
Inertia tensor	I^{-1}	3 by 3 matrix (in world frame)

Total force	\mathbf{F}	1 by 3 vector
Total torque	\mathbf{T}	1 by 3 vector

Rigid Body Dynamics

Linear effects

- $d \mathbf{x} / d t=\mathbf{v}$
- $d \mathbf{P} / d t=\mathbf{F}$

Angular effects $[3 \times 3]$ rot. makix

- $d \mathbf{R} / d t=\underline{\omega^{*} \mathbf{R}}$, where

$$
\omega^{*}=\left[\begin{array}{ccc}
0 & -\omega_{x} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
\omega_{y} & \omega_{z} & 0
\end{array}\right]
$$

- $d \mathbf{L} / d t=\mathbf{N}$
$\rightarrow \omega=\mathbf{I}^{-1} \mathbf{L}$
$-\mathbf{I}^{-1}=\mathbf{R I}_{\text {body }}^{-1} \mathbf{R}^{T}$

Rigid Body Dynamics

> // x - position
> state[0] $=x[0]$;
> state[1] = $x[1]$;
> state[2] = x[2];
> // R - orientation
> state[3] = R[0][0];
> state[4] = R[1][0];
> state[5] = R[2][0];
> state[6] = R[0][1];
> state[7] = R[1][1];
> state[8] = R[2][1]; state[9] = R[0][2];
> state[10] = R[1][2];
> state[11] = R[2][2];
> // P - linear momentum
> state[12] = P[0];
> state[13] = P[1];
> state[14] = P[2];
> // L - angular momentum
> state[15] = L[0];
> state[16] = L[1];
> state[17] = L[2];
> // t - OSP needs it
> state[18] $=0.0$

Init: Flatten state variables
into a state vector
$/ / d x / d t=v$
rate[0] $=v[0]$;
rate[1] = v[1];
rate[2] = v[2];
// dR/dt = w* R
double[][] Rdot =
mult(star (omega), R);
rate[3] = Rdot[0][0];
rate[4] = Rdot[1][0];
rate[5] = Rdot [2] [0];
rate[6] = Rdot[0][1];
rate[7] = Rdot[1][1];
rate[8] = Rdot[2][1];
rate[9] $=\operatorname{Rdot}[0][2]$;
rate[10] $=\operatorname{Rdot}[1][2] ;$
rate[11] = Rdot[2][2];
// dP/dt = force
rate[12] = force[0];
rate[13] = force[1];
rate[14] = force[2];
// dL/dt = torque
rate[15] = torque [0];
rate[16] = torque [1];
rate[17] = torque[2];
$/ / \mathrm{dt} / \mathrm{dt}=1$
rate[18] = 1;
Rate[]encodes $1^{\text {st }}$ order
ODE for our system
odeSolver.step();
$/ / x$
$x[0]=$
state $[0] ;$
$x[1]=$ state[1];
$x[2]=$ state[2];
// R
$\mathrm{R}[0][0]=$ state[3];
R[1][0] = state[4];
$\mathrm{R}[2][0]=$ state[5];
$R[0][1]=$ state[6];
$\mathrm{R}[1][1]=$ state[7];
R[2][1] = state[8];
$R[2][1]=$ state [8]
$R[0][2]=$ state[9]
$R[1][2]=$ state[10];
$\mathrm{R}[2][2]=$ state[11];
$\mathrm{R}=$ orthonomalize(R)
// P
$P[0]=$ state[12];
$\mathrm{P}[1]=$ state[13];
$\mathrm{P}[2]=$ state[14];
// L
[0] = state[15];
[1] = state[16];
$\mathrm{L}[2]=$ state[17];
Iinv = mult(R, mult(IbodyInv, transpose(R))); omega $=$ mult(Iinv, L);

Let ODE solve the state and then copy the state back to our state variables $\mathbf{x}, R, \mathbf{L}$
and \mathbf{T}.

Rigid Body Dynamics: Numerical Considerations

- Over time numerical errors accumulate in rotation matrix \mathbf{R}
- This effects our computation of I and ω
- Orthonormalize \mathbf{R} after every timestep

Orthonormalization

1. Normalize \mathbf{R}_{1}
2. $\mathbf{R}_{3}=\mathbf{R}_{1} \times \mathbf{R}_{2}$ (normalize \mathbf{R}_{3})
3. $\mathbf{R}_{2}=\mathbf{R}_{3} \times \mathbf{R}_{1}$ (normalize \mathbf{R}_{2})

Here \mathbf{R}_{i} represent the i-th row of matrix \mathbf{R}
Errors were shifted in the matrix

Representing Rotations

- We chose to represent rotations as 3-by-3 rotation matrices
- Quaternions can be used to represent rotations as well
- Most rigid body dynamics systems use quaterions
- See Ch. 17 of the textbook

Representing Rigid Bodies

- A rigid body has a shape that does not change over time
- It can translate through space and rotate
- A rigid body occupies a volume of space
- The distribution of its mass over this volume determines its motion or dynamics

Shape representation

- Shape representation is studied extensively in computer graphics and some areas of mechanical engineering and mathematics
- There are many ways of representing shape, each with a different set of advantages and disadvantages
- We will stick to polygons

Shape Representation using Polygons

- The surface of the object is represented by a collection of polygons
- The polygons are connected across their edges to form a continuous surface
- In order to have a well behaved representation we need to constrain our polygons
- First all of the polygons must be convex, note that we can always convert a concave polygon into two or more convex ones

Shape Representation using Triangles

- We will stick to triangles
- Any convex polygon can be converted to a collection of triangles

Advantages

- We are only dealing with one type of polygon, a uniform representation
- Triangles are the simplest polygon, makes our algorithms simpler
- Many modeling programs allow us to construct polygonal models
- Easy to display
- Many efficient algorithms exist for manipulating triangles

Disadvantages

- Not a compact representation
- Not a good approximation for curved surfaces

Other Types of Dynamics

- Articulated figures
- Rigid bodies connected by joints and hinges
- Used to model the dynamics of human figures
- Vehicle dynamics used to model the dynamics of various kinds of vehicles
- Deformable objects
- Cloth, soft toys, etc.

- These are more complicated than what we have seen so far

Readings

- Ch. 17 of the textbook
- Classical Mechanics (3rd Edition) by H. Goldstein and C.P. Poole Jr.

