
1 / 84

Random Processes
Simulation and Modeling (CSCI 3010U)

Faisal Qureshi

2 / 84

Figure 1: Dilbert and randomness

3 / 84

Random Processes
I Simulate random processes or activities
I Approximate phenomena that are too hard to describe

deterministically, or a deterministic simulation is too costly
I Provide variation in the simulation data, so we can estimate errors or

compute the range of an output

4 / 84

Monte Carlo Simulations
I Using repeated sampling to determine the properties of some

phenomenon
I Principle of inferential statistics

I A random sample tends to exhibit the same properties as the
population from which it is drawn from

I This principle doesn’t always hold, which can lead to inaccurate results

Example
What is the probability of not getting a single head after 10 coin flips?

5 / 84

Monte Carlo Simulations
What is the probability of getting a boxcars in a game of craps after 24
throws?

I Solve analytically
I Compute by writing a program

6 / 84

How many trials?
Law of Large Numbers
In repeated independent tests with some actual probability p of an
outcome for each test, the chance that the fraction of time that outcome
occurs converges to p as the number of trials goes to infinity

Gambler’s Fallacy

I Say you flip a coin 10 times, and get a string of heads. Are we more
likely to get a head the 11th time?

I No

7 / 84

How many trials?
How many samples are needed to have confidence in results?

Notion of Variance
How much spread there is in the possible outcomes

Standard deviation
The fraction of values taht are close to the mean

σ(x) =
√

1
|X|

∑
x∈X

(x− µ)2

I µ is the mean
I |X| is cardinality of x

8 / 84

Standard deviation
Lower values for standard deviation suggest:

I We are getting the correct answer
I We have better reasons to believe that we have the correct answer

Coefficient of variation = σ
µ

A way to measure relative standard deviation

Problems with coefficient of variation

I Not well behaved when mean µ is near zero
I Unlike standard deviation, it cannot be used to compute confidence

intervals

9 / 84

Confidence Intervals
Estimate the unknown parameters by providing a range that contains
unknown value and a confidence level that the unknown lie within that
range

Example
A candidate is expected to get 75% plus-minus 4% votes

Unstated assumptions

I Confidence level is 5%
I Elections are random trials that have normal distributions

10 / 84

Normal (Gaussian) Distribution

I Nice mathematical properties
I Models many naturally occuring phenomenons really well
I Many random variables are roughly normally distributed
I Many experimental setups have normally distributed errors

11 / 84

Normal Distribution and Confidence Intervals
I Normal distribution is characterized by mean and variance
I Mean and variance can be used to construct confidence intervals

I 68% of data within 1 standard deviation of mean
I 95% of data within 2 standard devication of mean
I 99.7% of data within 3 standard devication of mean

12 / 84

Nuclear Decay
Consider a large number of radioactive nuclei. According to the law of
radioactive decay, the rate of decay is proportional to the number of nuclei.
We can express this as the following differential equation:

dN

dt
= −λN.

Here, N is the number of nuclei and λ is the decay constant.

13 / 84

Nuclear Decay - Analytical Solution
We can actually solve this equation analytically and determine the number
of nuclei remaining after time t

N(t) = N(0)e−λt.

I N(0) is the initial number of nuclei.
I N(t) is the number of nuclei remaining after time t.

14 / 84

Nuclear Decay - Monte Carlo Method
Each nucleus is identical, and we assume that during any given time
interval ∆t, each nucleus has the probability p of decaying.

def nuclear_decay_monte_carlo(n0,p,steps):
print 'number of atoms at time 0', n0
print 'prob of decay', p
print 'steps', steps

nt = np.empty([steps, 1])
nt[0] = n0

for i in range(1,steps):
decay_or_not = np.random.random((1,int(nt[i-1])))
num_not_decayed = np.sum(decay_or_not > p)
nt[i] = num_not_decayed

return nt

15 / 84

Nuclear Decay

16 / 84

Random Walks
In 1D random walk, the walker starts at origin and takes a right step with
probability p and left step with probability 1− p.

n = 1000
x(0) = 0
do:

n -= n
c = draw_a_random_number()
if c < p:

x(t+1) = x(t) + 1
else:

x(t+1) = x(t) - 1
while n > 0

The walk takes one step in each time step of the simulation.

17 / 84

Multi-dimensional random walks
It is straightforward to extend a random walk to higher dimensions.

Example: 2D random walk

A walker takes one of up, down, left or right steps based upon the
associated probabilities: pu, pd, pl and pr. These probabilities all sum to 1.

18 / 84

Collecting statistics from random walks
To get anything meaningful out of such simulations, we need to repeat
them many times and collect statistics.

I Mean distance, what is the mean position of the walker after N steps.
I Maximum distance, what is the maximum distance that a walker

reached during one of the runs.
I Average maximum distance, what is the average maximum distance

that walker reached during all the runs.
I Histogram of positions

19 / 84

Random step lengths
I Changing step size at each time step
I Step size can also be a function of the length of the walk

I Either growing or shrinking as the walks get longer
I Different step sizes in different directions

20 / 84

Boundary conditions 1
What if the space is limited and the random walk hits a boundary?

I Absorbing boundary, walker is consumed upon hitting the boundary.
I Reflecting boundary, walker changes direction upon hitting the

boundary.
I Periodic boundary, walker appears at the positive boundary after

passing through the negative boundary and vice versa.
I Often used to simulated circular domains.

I Random boundary, walker is placed at a random location each time it
hits the boundary.

21 / 84

Boundary conditions 2
Absorbing boundary conditions

I With absorbing boundary conditions the walks can end early
I This creates significant challenges when collecting statistics

Reflecting boundary conditions

I Walker tends to stay at the edges of the region

22 / 84

Boundary conditions 3
Periodic boundary conditions

I Periodic boundary conditions produce a more uniform distribution
I This is easily explained, since walkers do not stick to the edges

Random boundary conditions

I Creates uniform trails (distribution over locations)

23 / 84

Random walks: are they truly that random?
Some aspects of random works are surprising in the sense that these are
not random at all.

I E.g., even length random walks (with step size of 1) all end up at
even locations.

I E.g., odd length random walks (with step size of 1) all end up at odd
locations.

We can introduce randomness by exploiting boundary conditions.

24 / 84

Variations on random walks 1
Traps
Trap is an extension of absorbing boundary condition. Here traps are
randomly placed all over the region. A walker is consumed upon reaching
a trap. Optionally it is possible to randomly place the walker at a different
location in the region.

Absorbing boundary conditions and traps can often lead to very short
walks.

I One option is to create a new walker (usually at a random location)
whenever a walker dies.

I Second option is to have more than one walkers in parallel. If there
are large enough walkers, the chances are high that some of these will
survive longer than others.

25 / 84

Variations on random walks 2
When multiple walkers are active at the same time, it raises the spectre of
collisions between walkers.

I Ignore the collisions
I Kill off one of the walker
I Walkers transform each other upon collision

I This is often used when simulating chemical reactions

26 / 84

Applications of random walks

27 / 84

Solving the diffusion equation
Consider the diffusion equation

∂P (x, t)
∂t

= D
∂2P (x, t)
∂x2

It is used to model a variety of physical processes, including fluid flow. It is
also used in finance. Analytical solutions to diffusion equation do not exist
except for the simplest cases. A suite of numerical solutions have been
proposed in the literature. Numerical solutions, however, cannot be easily
parallelized. Furthermore, these can only be used for a small set of
boundary conditions.

28 / 84

Solving the diffusion equation
It turns out that we can use random walks to solve the diffusion equation.
Asymptotically as the number of walks approach infinity, the average
properties of a random walk approach the solution to a diffusion equation.

Insight

I We are essentially replacing human time with computer time. Instead
of coming up with a numerical or analytical solution to the problem,
we will let computer figure it by running millions and millions of
random walks.

I It is easy to model boundary conditions in random walks.
I Random walks can easily exploit multiple processors.

29 / 84

Modeling a rain drop falling in strong wind

30 / 84

Variations on random walks
Persistent random walks
Probabilities for the current step depends upon the previous step.

Multi-state random walks
The random walk can be in one of multiple states, which determine the
probabilities for the current step.

This is akin to having a finite state machine with random transitions.

31 / 84

An application of multi-state random walks
Chromatographic columns
One application of multi-state walks is diffusion in a chromatographic
column. In this application we are interested in how far a particular
compound will move along a chromatographic column in a certain length
of time. For each type of compound we have a probability α that it will
move v units in each time step and a probability 1− α that it will not
move.

32 / 84

Self avoiding random walks
I A SAW is a random walk on a 2D or 3D lattice that cannot return to

one of the lattice points that it has already visited
I SAWs are of interest in several areas of physics and mathematics, and

surprisingly a number of their properties have resisted rigorous
mathematical analysis, so they must be studied in simulation

I SAWs terminate quickly
I Consider a 2D lattice, a random walk with up, down, left, right step

has a 3.7% chance of finishing just after 4 steps
I How do we generate walks of lengths more than 1000?

33 / 84

Self avoiding random walks
I Adjust statistics to account for a less random selection

I If one of the three moves is blocked, we can still randomly select one
of the two open moves, but giving less weight to the statistics
computed for this walk

Computing weight w(N) for a walk of length N

I w(1) = 1, since we can always take the first step
I If all three moves are blocked w(N) = 0
I If all three moves are possible w(N) = w(N − 1)
I If only m moves are possible, 0 < m < 3, then w(N) = m

3 w(N − 1),
select one of the m possible moves at random

Combining statistics over many walks

〈
R2〉 =

∑
i wi(N)R2

i∑
i wi(N)

34 / 84

Self avoiding random walks
I The strategy described in the previous slide gives us longer walks,

since we are able to avoid some terminations
I Walks with heigher weights are in a way healthier, we can make more

copies of these
I Compute ri = w(N)

〈w(N)〉 . For a healthy walk, ri > 1.
I If ri > 1, make c copies of the walker and assign each of the walkers

weight w(N)
c

I The number of copies is given by c = min(ri,m), where m is the
possible number of moves

I If ri < 1 then the walker is removed with probability 1− ri

35 / 84

Applications of self avoiding random walks
Polymer physics

I A polymer consists of N repeated units, called monomers.
I Each monomer consists of a small number of tightly bound atoms.

Typically N is in the 103 to 105 range.
I For polymers of length N one of the important physical properties is〈

R2
N

〉
, the mean squared end-to-end length of the polymer

(From U. Reading, UK)

36 / 84

Random numbers
There are ways to generate truly random numbers, but these require
physical processes, those that we believe to be truly random.

I Physical processes are costly and there isn’t an easy way to interface
these with a computer.

I Physical process are not repeatable, so we can’t use the same set of
random numbers in several simulations for testing and comparison.
(Of course we can always save the random numbers.)

37 / 84

Pseudo random numbers
Pseudo random numbers are generated using deterministic techniques, but
they appear to be random

We can always reproduce the same set of random numbers by using the
same starting conditions

We can also analyze them mathematically i.e. these numbers have the
same statistical properties as “truly” random numbers

38 / 84

Generating pseudo random numbers
All techniques produce random integers in the range 0 to m. We can
convert this number to a real number between 0 and 1 through division by
m.

1. Start with a number x0, often called the seed.
2. Use a function f(x) that generates the next number

xi+1 = f(xi)

Caveat
As soon as f returns a previously generated number, the sequence repeats
itself. This results in short sequences with bad statistical properties.

39 / 84

Generating uniformly distributed random numbers
I Simplest type of random number generator
I Easy to analyze
I Good random number generators exist

It is possible to generate random numbers from other distributions
given uniformly distributed random numbers.

40 / 84

Linear Congruential Method (LCM)
One of the best random number generator is also the simplest

xi+1 = (axi + c) mod m,

where

I m, the modulus, m > 0.
I a, the multiplier, 0 < a < m.
I c, the increment, 0 ≤ c < m.
I x0, the starting value, 0 ≤ x0 < m.

Python code for LCM

def lcm(m, a, c, seed):
while True:

seed = (a * seed + c) % m
yield seed

41 / 84

Linear congruential method
I The quality of the random number generator depends heavily on the

choice of m, a and c
I The length of the sequence cannot exceed m, since there are only m

values less than m, so we want m to be as large as possible
I Good values of a and c depend upon the value of m
I Rubric:

I c is relatively prime to m
I b = a − 1 is a multiple of p, for prime p dividing m
I b is a multiple of 4, if m is a multiple of 4

42 / 84

Linear congruential method
LCM has been studied extensively for 50 years or so, and good values for
a, c and m are available.

! " #
134456 8121 28411

243000 4561 51349

259200 7141 54773

233280 9301 49297

714025 4096 150889

Figure 2: LCM Values

43 / 84

Generating longer random number sequences
In many simulations we often need billions of random numbers. So how
can we generate longer sequences. Recall LCM can only produce
sequences of length less than or equal to m.

The length of the sequence (after which the sequence repeats itself) is
called the period of the random number generator.

Shuffling technique
The range of an LCM can be increased using a shuffling technique.

44 / 84

Shuffling technique
Procedure

1. Initialize k entries of array v with random values between 0 and 1.
2. Generate a random number y between 0 and m
3. Compute index j = k ym
4. Set r = v[j]
5. Generate a random number y between 0 and m
6. Set v[j] = y
7. Returns r

Properties

I If m is the sequence length produced by the base random number
generator then shuffling will produce a sequence that is several times
m in length.

I Shuffling also reduces any correlations that might exist in the original
sequence.

45 / 84

Correlations

corr(X,Y) = cov(X,Y)
σXσY

= E[(X − µX)(Y − µY)]
σXσY

46 / 84

Tests for random numbers
General tests for randomness that can be used for any distributions

I Chi-square test
I Kolmogorov-Smirnov test

47 / 84

Chi-square test
I A statistical test commonly used to compare observed data with data

one would expect to obtain according to a specific hypothesis
I Chi-square test accepts or rejects the Null Hypothesis, which states

that there is no statistically significant difference between the
observed and the expected frequencies

48 / 84

Using Chi-square test for testing the Null Hypothesis
I Compute χ2 statistic as follows

χ2 =
∑
i

(Oi − Ei)2

Ei
,

where Oi is the observed count in bin i and Ei is the expected count
in bin i

I Compute degrees of freedom as follows

d = #bins− 1

I Use χ2 and d to compute p-value as follows:

p-value = P (X > χ2(d))

I If p-value is less than then the level of significance (usually 0.05),
reject the Null Hypothesis.

49 / 84

Chi-square table
The following examples on chi-square table are taken from
https://onlinecourses.science.psu.edu/stat414/node/147

Example

I For d = 5 and χ2 = 11.07, p-value= P (X > 10) = 1− 0.95 = 0.05
I For d = 1 and χ2 = 0.004,

p-value= P (X > 0.004) = 1− 0.05 = 0.95

https://onlinecourses.science.psu.edu/stat414/node/147

50 / 84

Chi square test: p-values and α-values
I A p-value is used in hypothesis testing. The smaller the p-value, the

stronger the evidence that you should reject the null hypothesis.
I p-value > 0.10: No evidence against the null hypothesis. The data

appear to be consistent with the null hypothesis.
I 0.05 < p-value < 0.10: Weak evidence against the null hypothesis in

favor of the alternative.
I 0.01 < p-value < 0.05: Moderate evidence against the null hypothesis

in favor of the alternative.
I 0.001 < p-value < 0.01: Strong evidence against the null hypothesis

in favor of the alternative.
I p-value < 0.001 Very strong evidence against the null hypothesis in

favour of the alternative
I Significance level is a measure of how certain you want to be about

your results: low significance values correspond to a low probability
that the experimental results happened by chance.

I Scientists usually set the significance level at 0.05, or 5 percent. This
means that experimental results have, at most, a 5% chance of being
reproduced in a random sampling process.

51 / 84

Apply Chi-square test to see if a coin is biased
Say we flipped a coin 51 times, and we got 28 heads and 23 tails. These
are observed frequences. The expected number of heads and tails for an
unbiased coin, after 51 flips, is 25.5.

χ2 = (28− 25.5)2

25.5 + (23− 25.5)2

25.5
= 0.516

Since for this experiment the number of outcomes is 2 (head or tail), the
degree of freedom is 2− 1 = 1. Using the table above we see that the
p-value is between 0.9 and 0.1 (corresponding the χ2

expected) values of
0.016 and 2.706. Consequently p-value is greater than the level of
significance, which we choose to be 0.05. We accept the Null Hypothesis.

The coin is not biased.

52 / 84

Chi-square test for uniform random number generator
Given Yi the number of items in bin i, and pi the probability that an item
is placed in bin i, we compute Chi-Square statistics as follows:

χ2 =
k∑
i=1

(Yi − npi)2

npi
,

where n is the number of items and k is the number of bins.

In the case of uniform random number generator, we expect that the
probability of falling in a bin is equally likely, i.e., pi = 1/k.

Apply the Chi square test with degree of freedom = k − 1

53 / 84

Kolmogorov-Smirnov test
This test compares the random numbers against cumulative probability
distribution.

Cumulative probability distribution

FX(S) = Pr(X ≤ x)

54 / 84

Cumulative probability distribution from n samples
1. Sort the n samples in ascending order
2. FX is the number of samples less than x.

Example: Given 7 samples {1,23,4,5,3,2,46}

After sorting: {1,2,3,4,5,23,45}
F(3) = 2
F(23) = 5
F(7) = 5

55 / 84

Kolmogorov-Smirnov test
I A statistical hypothesis test
I KS is non-parametric and entirely agnostic
I KS checks the null hypothesis, which states that the sample is taken

from the “expected” distribution

56 / 84

Kolmogorov-Smirnov test
I Compute cumulative probability distribution from the sample
I Compute the distance between the sample cumulative probability

distribution and the desired cumulative probability distribution
I Let D be the maximum of these distances.

I Compute Dcritical (See table in the next slides)
I If D < Dcritical then the null hypothesis holds

57 / 84

Applying Kolmogorov-Smirnov test to check if the
following numbers are sampled from a normal distribution

I Sampled numbers: 0.15, 0.94, 0.05, 0.51, 0.29
I Dcritical = .565 We find this value in the KS Test Statistic Table (for

0.05 significance and for 5 samples) seen in the next slide
I Compute D (exercise)
I If D < Dcritical the null-hypothesis holds, meaning the sampled

numbers come from a normal distribution

58 / 84

Kolmogorov-Smirnov test

59 / 84

Tests for uniformly distributed random numbers
I Equidistribution test
I Serial test
I Coupon collecter’s test
I Serial correlation test

60 / 84

Equidistribution test
The equidistribution test is based on the fact that uniform random integers
should be evenly distributed amongst the possible integer values

1. Chose some convenient d (not too large) and then generate a
sequence of random integers between 0 and d− 1

2. Assign them to d bins based on their integer values (since the
numbers are uniformly distributed we would expect to find an equal
number of integers in each bin)

3. With a sequence of n numbers, we would expect to find n
d integers in

each bin, so we can use a Chi-square test. In this case we have
pi = 1

d , and the number of degrees of freedom is d− 1
4. Use Chi-square test

61 / 84

Serial test
Can be considered an extension of equidistribution test that considers pairs
of adjacent numbers.

Key idea
Given a sequence of random integers between 0 and d− 1. Consider a pair
of adjacent numbers:

(Y2i, Y2i+1) .

Since each pair is equally probable, so the pairs should be evenly
distributed over d2 bins.

62 / 84

Serial test
1. Generate a sequence of n random integers
2. Divide the sequence into n

2 pairs.
3. Each pair is assigned to one of the d2 bins.
4. Apply Chi-square test. Probability for each bin is 1

d2 and the degrees
of freedom is d2.

Caveat

I For this to work the sequence should be reasonable long (the length
should be at least 5d2).

I This approach can be extended to higher dimensions. However, it
quickly becomes infeasible since the number of bins grow very rapidly.

I Not practical beyond quadruples of random numbers.

63 / 84

Coupon collector’s test
I This test is also based on a sequence of integer random numbers

between 0 and d− 1, but now we are interested in collecting a
complete set of integers between 0 and d− 1, have at least one of
each

I In particular we are interested in the length of sequence r that it takes
to get the complete set

Procedure

I We start at the beginning of the sequence and keeping moving down
the sequence until we find a complete set of d integers

I The position where this occurs is called the sequence length
I We then move to the next item in the sequence and repeat the

process
I We are interested in the distribution of sequence lengths

64 / 84

Coupon collector’s test
I The following experession gives probabilities for sequences of lengths
n ≥ 10

pn = 1
10n−1

q∑
j=0

(−1)j
(
q
j

)
(q − j)n−1

I Use Chi-Square test to see if the observed sequence lengths match
those returned by the above expression

65 / 84

Spectral test
I One of the best tests for random number generators is the Spectral

test
I This test can only be applied to linear congruential random number

generators
I So far all random number generators that are known to be good pass

this test, and all that are known to be bad fail it
I This test is quite complicated, so we won’t examine the details, only

the basic ideas
I The test operates on the real random numbers sequence and it

examines all m numbers in the sequence
I The test starts by constructing t dimensional points out of the

sequence of random numbers. We construct m points as follows:

(Un, Un+1, Un+2, · · · , Un+t−1)

I A new point is constructed starting from each number, so each
number in the original sequence appears in t points.

Generally speaking t is between 2 and 6.

66 / 84

Spectral test

I Notice the pattern observed in the above figure
I “Real” random numbers when truncted exhibit the same pattern
I Grain of the random number generator

67 / 84

A note about the quality of random number generators
I These tests are applied to different sequences generated by a random

number generator
I All sequences from a “good” generator will pass these tests
I In practice, however, some sequences even from a “good” generator

will fail some tests
I This behavior is also observed for “true” random number sequences

68 / 84

Generating random numbers from uniform distributions
Given: uniform random number generator that return an integer U
between 0 and d.

Recipe to get a uniform random number r between a and b.

r = a+ (b− a)U
d

Recipe to get a uniform random number r between 0 and 1.

r = U

d

69 / 84

Generating random numbers from non-uniform discrete
distributions

Say we want to generate samples form a following discrete distribution: xi
with probability pi, where i ∈ [0, n] and

∑
i pi = 1.

Recipe

U = rand(0,1) # uniform random number between 0 and 1
if U < p[0]:

return x0
elif U < p[0]+p[1]:

return x1
...
else:

return xn

70 / 84

Generating random numbers from non-uniform discrete
distributions

We can also store the cumulative probabilities, so we don’t have to
compute probability sums eachtime as follows:

cj =
j∑
i=0

pi,

where j ∈ [0, n].

Always keep the most likely choices (those with higher probabilities) at the
top. This saves a lot of “if” comparisons. Also allows us to use binary
search to find the correct bin.

71 / 84

Generating random numbers from non-uniform discrete
distributions

Recipe Using cumulative probabilities

U = rand(0,1) # uniform random number between 0 and 1
if U < c[0]:

return x0
elif U < c[1]:

return x1
...
else:

return xn

72 / 84

Generating random numbers from non-uniform continuous
distributions

Cumulative probability distribution F (X) is used to generate samples from
non-uniform continuous distributions.

F (−∞) = 0

F (∞) = 1

0 ≤ F (x) ≤ 1

F (x1) ≤ F (x2) if x1 ≤ x2

73 / 84

Generating random numbers from non-uniform continuous
distributions

Consider the cumulative probability distribution F (X) = Pr(x ≤ X)
(associated with probability distribution f(x), where x is the random
variable with distribution f(x)).

Insight

A uniform random number generator produces a random probability and
the value of F (X) is a probability, so the inverse of F (X) takes the
probability and returns a random number with probability f(X).

74 / 84

Generating random numbers from non-uniform continuous
distributions

Given F (X) = Pr(x ≤ X) (associated with probability distribution f(x),
where x is the random variable with distribution f(x)).

If F−1(X) then it is straightforward to get a random number from f(x)
using the following recipe.

u = rand(0,1) # a uniform random number between 0 and 1

return F_inv(u)

The key challenge is that in many cases F−1 doesn’t exist.

75 / 84

Generating random numbers from exponential distributions
Exponential distributions, for example is used in nuclear decay — if a
substance emits a particle every µ seconds on average, then the times
between two emissions will be exponentially distributed with mean µ.

Cumulative probability distribution for exponential distribution is

F (x) = 1− e−
x
µ

.

76 / 84

Generating random numbers from exponential distributions
F−1(x) for cumulative probability distribution for exponential distribution
is

F−1(x) = −µ ln(1− U)

ln is slow; however, this approach is acceptable unless we plan to generate
a very large number of samples.

77 / 84

Generating samples from normal distribution
One of the most used probability distribution

78 / 84

Generating samples from normal distribution
We will focus on generating samples form normal distribution of mean (µ)
0 and variance (σ2) 1.

It is easy to generate samples from normal distribution N(µ, σ) as follows:

1. n ∼ N(0, 1) (a random number generated from a uniform distribution
with mean 0 and variance 1)

2. µ+ σn ∼ N(µ, σ)

79 / 84

Generating samples from normal distribution
Cumulative probability distribution for N(0, 1) is

F (x) = 1√
2π

∫ ∞
−∞

e−
t2
2 dt

In this case it is F (x) is invertible; however, it is not easy to compute.

We will look at two other approaches (for generating numbers from normal
distribution) that give acceptable results.

80 / 84

Generating samples from normal distribution
We will use the rejection method to generate samples from a normal
distribution

Rejection method

1. Generate a sample and check to see if it is from the desired
distribution.

2. If yes, return the sample.
3. Else, try again.

The trick is to guess the correct samples more frequently, to avoid having
to generate many samples.

81 / 84

Polar method for generating samples from normal
distribution

1. Generate two uniform random numbers U1 and U2
2. Set V1 = 2U1 − 1 and V2 = 2U2 − 1
3. Compute S = V 2

1 + V 2
2

4. If S ≥ 1 return to step 1
5. Else compute

X1 = V1

√
−2 lnS
S

and

X2 = V2

√
−2 lnS
S

6. Return X1 and X2

82 / 84

Polar method for generating samples from normal
distribution

I This method produces two samples
I The downside is that the method uses logarithm and square root

operations, which are expensive
I The polar method needs a random point (V1, V2) distributed on a

circle with radius 1. This is hard to generate, but it is easy to
generate a random point within a square. So we use the smallest
square containing the circle and generate a random point within this
square. If this point is also within the circle we continue, otherwise
we generate another point.

83 / 84

Ratio method for generating samples from normal
distribution

1. Generate two uniform random numbers U1 and U2

2. Set X =
√

8
2e

(U2− 1
2)

U1

3. If X2 ≤ 5− 4e 1
4U1 return X

4. If X2 ≥ 5− 4e−1.35U1 + 1.4 go back to step 1
5. If X2 ≤ − 4

lnU1
return X

6. Go back to step 1

Steps 2 and 3 are optional, but they increase the efficiency of the algorithm
considerably. In this case we only produce one random number, but we
avoid using logarithm most of the time, so it could be more efficient than
the polar method. Again we generate a pair of random numbers, and then
check to see if they produce the right result, otherwise we try again.

84 / 84

Summary
I Monte Carlo techniques
I Random walks
I Techniques for generating and testing sequences of random numbers
I Applications of random walks

