
1 / 55

Many Particle Systems
Simulation and Modeling (CSCI 3010U)

Faisal Qureshi



2 / 55

Many particle systems
We now turn our attention to many particle systems. These simulations lie
at the intersection of deterministic and random simulations.

These simulations are often used to model solids, liquids and gases. The
idea is to gain insight into micro structure of these materials by simulating
individual particles. It is also possible to study the macro structure, which
leads us to thermodynamics and random processes.



3 / 55

Molecular dynamics
I Gases, liquids and solids are composed of molecules.
I Even a small sample of material can contain a very large number of

molecules: on the order of 1025.
I It is possible to study these systems by simulating molecules. We

obviously cannot yet simulate 1025 molecules. We can, however,
study thousands or even millions of molecules.

I We will use small scale simulations (say 100 or 1000 particles) learn
how these materials behave.

I We will make simplifying assumptions about how molecules behave
(interact, move, etc.). It turns out that individual motion of each
molecule is not important. Rather we are interested in the statistical
properties of the entire collection of molecules.



4 / 55

Molecular dynamics — key assumptions
I Shape is not important
I There are no chemical reactions
I Molecules follow classical dynamics
I Gravity is ignored
I Inter-molecular forces (attraction and repulsion) are important

I These forces depend only upon the distance between molecules



5 / 55

Molecular dynamics — potential energy
Each molecule pair contribute u(rij) to the total potential energy of the
system. rij is the distance between molecules i and j.

U =
N−1∑
j=1

N∑
j=i+1

u(rij)

We can compute U using quantum dynamics, however, that is too difficult.
Rather we will construct phenomenological models based upon
observations, and use these models to estimate U .



6 / 55

Lennard-Jones potential
I Molecules attract each other due to van der Walls interactions (if the

molecules are not too far apart)
I Molecules repulse each other when they get too close to each other

(Pauli exclusions principle)
I This is akin to collisions between particles

u(r) = 4ε
[(σ

r

)12
−
(σ
r

)6
]



7 / 55

Molecular dynamics — implementation considerations
Many of the quantities used in molecular dynamics are quite small. This
can lead to numerical errors (loss of precision, problem with divisions, etc.)

An option is to scale these quantities.

Lennard-Jones potential gives us two natural units for our simulations.

I Use σ as the unit of distance.
I Use ε as the unity of energy.
I For mass, we use the mass of a single atom.
I Velocity is measured in units of (ε/m)1/2

I Time is measured in units of σ(ε/m)1/2

I Our unit of time is 2.17× 10−12 seconds
I Molecular dynamics simulations typically run for 10−11 to 10−8

seconds



8 / 55

Physical units for Argon gas



9 / 55

Computing accelerations
In order to simulate particle motion, we need quantities for the standard
equations of motion: force, mass and acceleration.

We can get the force (and thereby acceleration) from the potential energy
computed via Lennard-Jones potential.

f(r) = −∇u(r)

= 24ε
r

[
2
(σ
r

)12
−
(σ
r

)6
]



10 / 55

Boundary conditions
When we have a very large number of molecules (say 1025) in a very small
space, only a tiny fraction of these molecules interact with the boundaries.

In our simulations, we are simulating far fewer particles. Consequently, a
large fraction of these end up interacting with the boundaries. We need to
pay special attention to boundary conditions in our simulations. Periodic
boundary conditions are often used that remove the surface effects from
the simulation.



11 / 55

Boundary conditions - positions

Positions

Positions with periodic boundary conditions (Lx = 10)



12 / 55

Boundary conditions - position
def pbc_pos(p, l):

if p > 0:
while p > l:

p -= l
elif p < 0:

while p < 0:
p += l

else:
pass

return p

Example
Positions: 1, 8, 13,−5

Positions with periodic conditions (Lx = 10): 1, 8, 3, 5



13 / 55

Boundary conditions - separation
def pbc_sep(d, l):

if d > 0:
while d > 0.5*l:

d -= l
elif d < 0:

while d < -0.5*l:
d += l

else:
pass

return d

Example
Positions: 1, 8, 13,−5
Distances (from 1): 0,−2,−4,−7

Distances with periodic conditions (Lx = 10): 0,−2,−4, 3



14 / 55

Setting up initial conditions
One of the challenges in these simulations is how to set up the initial
conditions.

We are often interested in the overall state of the system (say, as described
by some differential equation, some statistical property of the system, etc.).
How do we then set up the individual particles (say their locations and
velocities) such that the overall state of the system is what we desire?



15 / 55

Setting up the locations on a rectangular grid
def rect_pos(nx, ny, Lx, Ly):

'''
Create 4 x n_particles state vector
'''
n_particles = nx * ny # number of particles
state = np.zeros([4, n_particles]) # 4-by-n_particles state vector
dx, dy = Lx / nx, Ly / ny # the velocities are currently
for ix in range(nx): # set to 0

for iy in range(ny):
i = ix + iy * nx
state[0,i] = dx * (ix + 0.5) # x location of ith particle
state[1,i] = dy * (iy + 0.5) # y location of ith particle

return state



16 / 55

Initial conditions example - system temperature
According to the equipartition theorem, the mean kinetic energy of a
particle per degree of freedom is kT/2, where k is Boltzmann’s constant
and T is the temperature. We can generalize this relation to define the
temperature at time t by

kT (t) = (2/d)K(t)/N,

where K is the kinetic energy of the system at time t and d is the spatial
dimension. In the following we will consider d = 2.

How do we setup individual velocities to have certain temperature T (t) at
time t = 0?

Kinetic energy
Recall that kinetic energy at time t is

1
2

N∑
i=1

mvi · vi



17 / 55

Setting up initial velocities - getting the momentum right
Before we begin to assign velocities (and sometimes locations) to our
particles, we make the following observations: the whole material is not in
motion, so the overall momentum must be 0

1. Randomly assign velocities to particles
2. Compute overall momentum of the system
3. Compute average momentum (per particle)
4. Subtract average momentum (per particle) from each particle

Now the total momentum of the system is 0



18 / 55

Setting up initial velocities - getting the momentum right

v_sum = np.zeros([1,2])
n_particles = state.shape[1]

for i in range(n_particles):
state[2:, i] = np.random.rand(2) - 0.5

v_sum = np.sum(state[2:, :], 1)

for i in range(n_particles):
state[2:, i] = state[2:, i] - (v_sum / n_particles)

# Now the net velocity of all particles is [0,0]



19 / 55

Setting up initial velocities - getting the kinetic energy
right

Now we turn our attention to temperature of the system. Temperature of
the system is a function of kinetic energy. We compute the total kinetic
energy of the system, and use it to compute a scale factor that will take
the current kinetic energy of the system to the desired kinetic energy.

Multiply all velocities with this scale factor to achieve the desired kinetic
energy.



20 / 55

Setting up initial velocities - getting the kinetic energy
right

v2_sum = np.sum(state[2:,:]**2, 1)

total_ke = 0.5 * (v2_sum[0]+v2_sum[1]) # 1/2 m v^2, assuming m = 1
ke_per_particle = total_ke / n_particles
rescale_ke = (initial_ke_per_particle / ke_per_particle) ** 0.5
state[2:, :] = state[2:, :] * rescale_ke



21 / 55

Setting up intitial conditions - getting the locations right
Now that we have the right velocities for our particles. How do we assign
positions to these particles. Of course no two particles should occupy the
same position.

I For gases, place particles at random positions
I For solids, place particles at lattice locations
I For liquids, particles locations fall the two other alternatives



22 / 55

Setting particles positions for gas simulations
I Place particles at random locations
I Particles cannot be too close to each other

I This will generate very large repulsive forces, which in turn will cause
problems for our ODE solvers

I Separation between two molecules should be at least 21/6σ

I Use rejection based techniques to achieve this
I Generate a location, and accept it if it is not too close to an existing

molecule
I This approach works reasonably well as long as gas is not very dense



23 / 55

Setting particle positions for gas simulations
One option to deal with dense gases is to start with a solid. Place particles
at grid locations. Then slowly rise the temperature of the system. Solid
will turn to liquid, which in time will turn to gas.

This also solves the problem of setting particle positions for liquids.

This approach raises an interesting question. Often time initial conditions
will be unstable and these will slowly evolve towards equilibrium.



24 / 55

Setting up initial conditions
I Setting up initial conditions can take a long time
I It is useful to have the ability to save and load initial conditions

Practical considerations

I Many simulations run for hours if not days and weeks. The ability to
save/load the state of simulation is important. If something fails, the
simulation can be restarted.

I These are called checkpoint dumps or simply checkpoints
I Many supercomputing centers forces you to save simulations

periodically.



25 / 55

Simulation particle dynamics
Now that the initial conditions are set — each particle is at a particle
location, moving with a certain velocity — we will use equations of
motions as before to evolve the simulation over time i.e., particle locations
and velocities as they move under the influence of attractive and repulsive
forces.

We need to solve F = ma

I m = 1 in our units. So the above equation is simplified to F = a.
I We need to compute accelerations produced by each molecule pair.

I Each molecule belongs to N − 1 pairs
I Note that if molecule i exerts force fij on molecule j then molecule j

exerts −fij on molecule i. So fij = −fji



26 / 55

Computing forces (accelerations)
def compute_acc(state, Lx, Ly):

n_particles = state.shape[1]

acc = np.zeros([2, n_particles])

pe, virial = 0, 0
for i in range(0, n_particles-1):

for j in range(i+1, n_particles):
dx = state[0,i]-state[0,j]
dy = state[1,i]-state[1,j]
dx = pbc_sep(dx, Lx)
dy = pbc_sep(dy, Ly)
r2 = dx**2 + dy**2
one_over_r2 = 1. / r2
one_over_r6 = one_over_r2**3
f_over_r = 48. * one_over_r6 * (one_over_r6 - 0.5) * one_over_r2
fx = f_over_r * dx
fy = f_over_r * dy
acc[:,i] = acc[:,i] + [fx, fy]
acc[:,j] = acc[:,j] - [fx, fy]

return acc



27 / 55

Verlet solver
I We can choose to use Verlet ODE solver for this application
I Notice that acceleration is computed twice at each step; however, if

we are careful we only need to compute accelerations once

xn+1 = xn + vn∆t+ 1
2an(δt)2

vn+1 = vn + 1
2 (an+1 + an) ∆t



28 / 55

Using simulations to carry out experiments
We are not interested in the positions/velocities for individual particles.
Rather we are interested in the properties of the matter as a whole. We
want to relate the simulation results to quantities that we can measure in
the real world.

Instantaneous kinetic temperature
Lets consider temperature. We can measure instantaneous kinetic
temperature using the following relationship

kT (t) = 1
2N

N∑
i=1

mivi(t) · vi(t).



29 / 55

Measuring kinetic temperature
The temperature that is usually measured in a molecular dynamics
simulation is the time average of T (t) over many configurations of the
particles. We will refer to this temperature as the kinetic temperature. For
two dimensions we write the kinetic temperature as

kT = 1
2N

N∑
i=1

mvi(t) · vi(t).

The bar denotes the time average. This equation only holds if the
momentum of the center of mass is fixed.



30 / 55

Measuring pressure
With in the context of thermodynamics, the other quantity that is of
interest is pressure

P (t)V = NkT (t) + 1
2
∑
i<j

rij(t) · Fij(t),

where V is the volume (or area in 2D).

We cannot observe instantaneous pressure in the real world. So we instead
we will use the time average

PV

NkT
− 1 = 1

2NkT
∑
i<j

rij(t) · Fij(t).



31 / 55

Using simulations to carry out experiments
Simulations can also be used to compute other real-world quantities of
interest:

I heat capacity
I velocity distributions that describe the probability of a molecule

having a particular velocity
I distributions of inter-molecule distances



32 / 55

Many particle simulations so far
I These simulations have started with completely deterministic motion

at the molecular level, and from that we have produced statistics that
link to results obtained in the real world.



33 / 55

Ensemble
Ensemble is a collection of states at the micro level that leads to the same
results at the macro level.

For example, the set of all possible particle velocities that give rise to the
same overall temperature.



34 / 55

Microcanonical ensemble
Assumption: no external forces (influences) on the particles, i.e., no
gravity.

Consider N particles in a volume V with total energy E. The macrostate
of this system is given by N , V and E. In this case many microstates
satisfy a macrostate. Each of these microstates is often referred to as
accessible state. We have no preference for any microstate. Consequently,
each microstate is equally likely.

Say in total there are Ω microstate. Then the probability Ps of a particular
microstate s is

Ps = 1
Ω



35 / 55

Why microcanonical ensemble?
Previously we were performing time averages to compute a macro value.
For example, we need to average instantaneous temperatures over a short
duration to get the temperature of the system. This is at least how a
thermometer works in the real world.

In order to perform time averages we had to simulate system dynamics
(using equations of motions).

Say there is a mechanism to enumerate any microstate s, along with its
probability Ps. Additionally, that we are able to compute the macro
property As given this microstate. We can then compute average of the
macrostate as follows:

〈A〉 =
Q∑
s=1

PsAS



36 / 55

Quasi-ergodic hypothesis
It is sometimes more efficient to replace time average with 〈A〉. This is
called quasi-ergodic hypothesis, which has been proved for many
interesting systems (but not in general).

Why is this a big deal?

This means that we are able to compute time averages of (macro)
quantities of interest without running time-consuming dynamics.

We do not need to compute system dynamics. We simply need to sample
the states. The sampling has to unbiased, otherwise the average is not
valid. Even if there is a very large number of states, we only need to
sample a finite subset of those, since our time averages are also computed
over a finite length of time.



37 / 55

How do we sample the states of an ensemble with the
desired energy?

I We could just randomly generate the properties of the particles, but
its unlikely that their total energy would be E

I We would have to generate a large number of states in order to get a
small number that meet our criteria

I This is not very efficient, so we need a better way

Demon algorithm

I The demon algorithm is a technique that can be used to generate
states that have a total energy of E

I We do this by adding an extra degree of freedom called the demon
I The demon can loan energy to the system or absorb extra energy to

keep the total energy at E
I We don’t need to generate a set of particles with total energy exactly
E



38 / 55

Demon algorithm
Choose a particle at random and make a trial change to its properties

I Compute ∆E, the change in energy due to this change
I If ∆E ≤ 0, accept the change and give |∆E| to the demon,
Ed = Ed + |∆E|

I If ∆E > 0 and Ed ≥ ∆E, accept the change and remove energy
from demon, Ed = Ed −∆E

I Otherwise, reject the change
I Repeat until equilibrium is reached, that is the changes in Es (the

energy of the system) and Ed settle down
I Note that Es + Ed = E is a constant since energy flows between the

demon and the system to keep the energy constant



39 / 55

Using demon algorithm to sample system states at energy
40 with 4000 particles

I After 500 steps the system and the demon reach a steady state where
system energy hovers around 39.980

I 〈Ed〉 = 40.06 and 〈Ed〉 = 0.02



40 / 55

Using demon algorithm to sample system states at energy
40 with 10000 particles

I We can further reduce the effect of demon by using a larger N (for
this experiment N = 10000)

I 〈Ed〉 = 40.07 and 〈Ed〉 = 0.0083



41 / 55

Demon algorithm
def mcs(N, demon_energy, system_energy, v, delta):

accepted = 0
for i in range(N):

j = np.random.choice(N)
old_v_j = v[j]
change = (np.random.random()-0.5)*delta
v[j] += change
new_energy = compute_energy(v)
delta_energy = new_energy - system_energy

if delta_energy < 0:
system_energy += delta_energy
demon_energy -= delta_energy
accepted += 1

elif delta_energy > 0:
if demon_energy >= delta_energy:

system_energy += delta_energy
demon_energy -= delta_energy
accepted += 1

else:
v[j] = old_v_j

return accepted, demon_energy, system_energy, v



42 / 55

Demon algorithm
I It turns out the demon itself tells us a lot of interesting information
I If we run some experiments we find out that the probability

distribution of Ed is
P (Ed) ∝ e−Ed/kT

I We can use P (Ed) to estimate the kinetic temperature of the demon.
So demon can act as a thermometer.



43 / 55

Canonical ensemble
I The ensemble that describes the probability distribution of a system

in thermal equilibrium with a heat bath is known as the canonical
ensemble.

I A canonical ensemble is characterized by temperature T , the number
of particles N and the volume V .

I We can treat demon to be the system of interest which is interacting
with a much bigger system (an ideal gas in our example), which acts
as the heat bath.

I The probability distribution of the microstates of a system in thermal
equilibrium with a heat bath is the same as the probability
distribution of the energy of the demon

Ps = 1
Z
e−βEs ,

where β = 1/kT and Z is the normalisation constant. Ps is referred
to as the Boltzmann or the canonical distribution. Z is the partition
function.



44 / 55

Ising model
I A model for molecular behavior
I Proposed by Wilhelm Lenz 1920 and developed by his student Ernst

Ising 1925 to study the phase transition from a paramagnet to
ferromagnet

I Paramagnetism is a form of magnetism whereby certain materials are
weakly attracted by an externally applied magnetic field,

I Ferromagnetism is the mechanism by which certain materials (such as
iron) form permanent magnets, or are attracted to magnets.

I 2D and 3D Ising model exhibit phase transition



45 / 55

Ising model
I The lattice has N sites, and at each site i the molecule can be in one

of two states si, where si can be either +1 or -1
I These states are called spins, since the original application was

magnetic material
I The energy of the system is given by:

E = −J
N∑

i,j=nn(i)

sisj −B
N∑
i=1

si

I The first term models the interaction between neighbouring molecules
and the second models the effect of an external magnetic field

I If J > 0, the model favours pairs of molecules with the same spin
I If J < 0, the model favours pairs of molecules with the opposite spin
I Normally periodic boundary conditions are used with this model



46 / 55

Ising model and magnetism
I Magnetism is given by

M =
N∑
i=1

si

I Other quantities of interest m = M
N , the magnetism per spin, or 〈M〉

or 〈M2〉 − 〈M〉2
I Notice that this system doesn’t have traditional dynamics, so we will

sample its states using some type of Monte Carlo algorithm



47 / 55

Ising model and demon algorithm
I Use demon algorithm to sample configurations of the Ising model

I Choose a spin at random, and flip it.
I Compute the change in energy and decide to accept the change or not.

I Measure the temperature of the system by using demon energy Ed
I Compute P (Ed) ∝ e−Ed/kT and use it to find T
I Estimate 〈Ed〉

I Note that 〈Ed〉 is not equal to kT since Ed in case of the Ising model
is discrete. Rather Ed is related to temperature as follows

kT/J = 4
ln(1 + 4J/〈Ed〉)

I It is difficult to pick an initial confguration (of spins) with precisely
the desired energy

I It is convenient to choose the initial energy of the system plus the
demon to be an integer multiple of 4J

I Begin with an initial configuration where all spins are up and then
randomly flip spins while the energy is less than the desired energy



48 / 55

Metropolis algorithm
I When a system is placed in thermal contact with a heat bath at

temprature T , the system reaches thermal equilibrium by exchanging
energy with the heat bath. Imagine a large number of copies of
system with volume V , number of particles N at thermal equilibrium
at temperature T then the probability Ps that the system is in
microstate s with energy Es is

Ps = 1
Z
e−βEs .

I We can use Ps to obtain ensemble average of the physical quantities
of interest. E.g., the mean energy is

〈E〉 =
∑
s

EsPs = 1
Z

∑
s

Ese
−βEs .



49 / 55

Metropolis algorithm
I Given m samples of the total number of M microstates, we an

estimate the mean value of a physical quantity A as follows

〈A〉 ≈ Am =
∑M
s=1Ase

−βEs∑M
s=1 e

−βEs

,

As is the value of the physical quantity in microstate s.
I A crude Monte Carlo will generated a microstate s at random,

calculate Es, As and e−βEs .
I A microstate thus generated would be very improbable and will

contribute very little to the sum.
I We need to be smarter in how we sample states.
I Be careful that we don’t introduce bias.



50 / 55

Metropolis algorithm - Importance sampling
I To introduce importance sampling lets rewrite

〈A〉 ≈ Am =
∑M
s=1Ase

−βEs∑M
s=1 e

−βEs

,

by multiplying and dividing by πs:

〈A〉 ≈ Am =
∑M
s=1Ase

−βEsπs∑M
s=1 e

−βEsπs
.

I If we generate microstates with probability πs, then the above can be
re-written as:

Am =
∑M
s=1(As/πs)e−βEs∑M
s=1(1/πs)e−βEs

.

I If we average over a biased sample generated according to πs, we
need to weight each microstate by 1/πs to get rid of bias.



51 / 55

Metropolis algorithm - Importance sampling
I Generate microstate s with probability πs, then

Am =
∑M
s=1(As/πs)e−βEs∑M
s=1(1/πs)e−βEs

.

I A reasonable choice for πs is Boltzmann distribution

πs = e−βEs∑m
s=1 e

−βEs
.

I If each microstate s is sampled according to the Boltzmann
distribution then

Am = 1
m

m∑
s=1

As.



52 / 55

Metropolis algorithm for Ising model
1. Establish an initial microstate (the energy of this state is not

important)
2. Choose a spin at random and make a trial flip
3. Compute ∆E = Etrial − Eold.
4. If ∆E ≤ 0, accept the new microstate s.
5. If ∆E > 0, compute w = e−β∆E

6. Generate uniform random number r in unit interval [0, 1]
7. If r ≤ w, accept the microstate, otherwise retain the old microstate
8. Determine the value of the desired physical quantity As
9. Repeat steps 2 through 8 to obtain a sufficient number of microstates

10. Periodically compute averages over the microstates



53 / 55

Getting rid of autocorrelations
I We do not want to compute As after each flip, because the the

values of As before and after the flip will be very similar.
I Ideally we wish to compute As for states that are statistically

independent. The problem is that we don’t know a priori the mean
number of spin flips that are needed to obtain configurations that are
statistically independent.

I Use time displaced autocorrelation function

CA(t) = 〈A(t0)A(t0 + t)〉 − 〈A〉2

〈A2〉 − 〈A〉2

to find time interval t such that A(t0) and A(t0 + t) become
uncorrelated or in other words CA(t) becomes 0.

I CA(t)→ 0 as t→∞
I CA(t = 0) is normalized to unity.
I For Ising model t = 1 refers to a single spin flip.



54 / 55

Autocorrelation
I We can re-write the time displaced autocorrelation function as follows:

CA(t) =
1

N−t
∑N−t
t0=1A(t0)A(t0 + t)− 〈A〉2

〈A2〉 − 〈A〉2
.

I The denominator is there to normalize CA(0).



55 / 55

Summary
I Simulating gases, liquids and solids
I Molecular dynamics – Lennard-Jones potential
I Boundary conditions
I Microcanonical and canonical ensemble
I Demon algorithm
I Ising model
I Metropolis algorithm
I Autocorrelations


