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Continuous Systems
Simulation and Modeling (CSCI 3010U)
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Continuous systems simulation
I Time is treated as a continuous variable that drives the simulation
I Model is based upon differential equations, which describe how

systems evolves over time, and how it responds to changes in input
variables

I In this course, we will mostly deal with Ordinary Differential Equations
(ODE), though Partial Differential Equations are used in some cases
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Continuous system simulation: Variabls
I Three set of variables:

I State variables;
I Input variables; and
I Output variables.

I There is no overlap between input and state variables
I Input variables are not controlled by the simulation

I The angle of the steering wheel in the car simulator example
I Output variables are things that we observe

I The speed of the vehicle in the car simulator example
I State Variables are controlled by the differential equations

I The speed of the vehicle in the car simulator example
I The location of the vehicle in the car simulator example
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Ordinary differential equations
An ODE is a function with the following ingredients:

I An independent variable (usually “time” t that derivatives are taken
with respect to

I A dependent variable, i.e. function of the independent variable, e.g.
x = x(t) “the variable x which is a function of t”.

I A multi-variable function F that describes a relationship between the
derivatives of the dependent variable (taken with respect to the
independent variable)

F

(
t, x,

dx

dt
,
d2x

dt2
, · · · , d

nx

dtn

)
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ODE: comments
I dx

dt denotes derivative of x w.r.t. t
I x′ = dx

dt
I Dx = dx

dt
I Order of a differential equation is the highest order of derivative in

that equation

Examples

I mx′′ = F
I x′ + 32x′′ + x′′′ = 0
I x′ + 34x = 32
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ODE: comments
I dx

dt denotes derivative of x w.r.t. t
I x′ = dx

dt
I Dx = dx

dt
I Order of a differential equation is the highest order of derivative in

that equation

Examples

I mx′′ = F , (order is 2)
I x′ + 32x′′ + x′′′ = 0 , (order is 3)
I x′ + 34x = 32 , (order is 1)
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Solving differential equations
I Solution is the dependent variable x = x(t) that satisfies the equation
I Key idea is integration

Example: x′′ = 2

1. Integrate once: x′ = 2t+ C1
2. Integrate again: x = t2 + tC1 + C2 (Solution)

Solve for constants C1 and C2 using intial or boundary conditions.

Using initial conditions x′(0) = 3 and x(0) = 2, we get C1=3 and C2 = 2.
The solution is x(t) = t2 + 3t+ 2.
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Nth order ODEs
I General solution to an nth order ODE will contain n constants of

integration
I We need n more equations

I Use initial or boundary conditions to get these equations to solve for
the constants of integration

I Initial conditions
I The values of x(t) and its first n − 1 derivatives for a particular value

of t
I If such values are only available at the end, run time backwards to

convert problem to initial conditions
I Boundary conditions

I The values of x(t) and its derivatives for two different values of t
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Nth order ODE reducibility
I If the independent variable t does not occur in the equation, then the

order of the equation can be lowered

F

(
x,
dx

dt
,
d2x

dt2

)
=⇒ F

(
x, u, u

du

dt

)
where

u = dx

dt
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Nth order ODE reducibility
I If the dependent variable x does not occur in the equation, then the

order of the equation can also be lowered

F

(
t,
dx

dt
,
d2x

dt2

)
=⇒ F

(
t, u,

du

dt

)
where

u = dx

dt
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First order ODEs
I All of our simulations only involve first order ODEs
I What about models that involve higher order ODEs?

I E.g., the equation of motion for particle is modelled by a second order
differential equation

I Applies reducibility, i.e., replace a higher order differential equation by
a system of first order differential equations

I We can replace an nth order ODE with n first order ODE
I Advantage

I First order equations are much easier to solve numerically
I Very few numerical solvers available for higher order equations

Takeaway: lets stick to first order ODEs
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Example: equation of motion
Newton’s second law of motion: “The acceleration of an object as
produced by a net force is directly proportional to the magnitude of the
net force, in the same direction as the net force, and inversely proportional
to the mass of the object.”

Mathematically:

a ∝ F and a ∝ 1
m , and combining the two we get F = ma. Recall

a = d2x
dt2 , so F = ma is a second order equation.

F = ma =⇒ F = m
d2x

dt2
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Example: equation of motion
We introduce a new variable velocity v = dx

dt , and get the following first
order system of equations

v = dx

dt

F = m
dv

dt
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Solving ODEs numerically
General idea: given a solution x(t) at time t = t0, incrementally step
forward in time to find x(t+ ∆t)

Example: lets consider the equation of motion

v = dx

dt
=⇒ ∆x = v ×∆t

F = m
dv

dt
=⇒ ∆v = m× F ×∆t
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Solving ODEs numerically
We will use the following equations to update the value of x over time.

∆x = v ×∆t

∆v = m× F ×∆t

Case study
Given m = 1, F = 1, v(0) = 0, x(0) = 0, and ∆t = 1. What is the value
of x at time t = 3?

I x(1) =
I v(1) =

I x(2) =
I v(2) =

I x(3) =
I v(3) =
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Solving ODEs numerically: practical considerations
I Have to choose ∆t carefully

I ∆t too small; the simulation can become very slow
I ∆t too large; the simulation can become very inaccurate
I Advanced techniques can change ∆t when solving equations to

maintain acceptable accuracy and speed
I ∆t determines the exact points in time for which we have the solution

I What if we want solution at other points in time?
I This places constraints on how we solve the equations

I Often times ∆t used for solving ODEs is much smaller than the one
used to update the display
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Choice of ∆T

I Molecular activity (fraction of a millisecond)
I Evolution of an ecosystem (months or years)
I Galaxy formation (millions or billions of years)
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Simulation loop
I Advance the simulation
I Display current results
I Get the user response
I Repeat
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Displaying results
I Real-time or not?
I Timescale
I Response and interactivity
I Refresh rates
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Mass spring system

Hook’s law (1676) states, “the extension
is proportional to the force”

Mathematically, F = −kx, where k is
the spring constant and x is the
displacement of the spring from rest
position under the application of force F .
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Mass spring system
Step 1: construct a model that will describe the motion of the
mass over time

Hook’s law: F = −kx

Newton’s Second Law of Motion: F = ma

Combining the two we get

ma = −kx

=⇒ m
dx2

dt2
= −kx
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Mass spring system
Step2: find a way to solve the model numerically

Convert the second order mdx2

dt2 = −kx to a system of first order equations

dx

dt
= v

m
dv

dt
= −kx

And make the update rules

x(t+ ∆t) = x(t) + v(t)∆t

v(t+ ∆t) = − k
m
x(t)∆t+ v(t)
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Mass spring system
I Set values for mass m and spring constant k
I Set the initial conditions

I Values for x and v at start time t0

I Run the simulation loop
1. Update t to t + ∆t
2. Update values for x and v using the update ruls
3. Display results or save them to file for plotting
4. Repeat steps 1 to 4

We just simulated a Simple Harmonic Oscillator
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Mass spring system
# Mass-Spring system
class Mass:

def __init__(self):
self.x = 5
self.vx = 0
self.k = 1
self.dt = 0.1
self.t = 0
self.m = 1.0

def update(self):
self.x += (self.vx * self.dt)
self.vx += (- self.k * self.x * self.dt / self.m)
self.t += self.dt
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Mass Spring Damper
Exercise: simulate a mass spring damper system
The mass experiences a damping force that is proportional to its current
velocity

Mathematically
F = −kx− cv

where c is the damping constant
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Bouncing ball

Assumption 1: We simplify the
problem by treating the ball as a
particle
From Newton’s Second Law of
Motion

F = m
dx2

dt2

where x is the height of the ball
from the ground and m is the
mass of the ball.

! = 0

+!

ℎ

&
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Bouncing ball

Assumption 2 Gravity is the only
force acting upon this ball then

F = −mg

Putting it together we get

dx2

dt2
= −g

!
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Bouncing ball

Data collection
I We need to know the value

of g. For our purposes, we
use g = 9.8m/s2

I By using different g we can
simulate bouncing ball on
different planets

!
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ℎ
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Bouncing ball

Did you notice something peculiar with this plot?
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Bouncing ball
I The ball goes higher with each bounce, which is unexpected.
I The error doesn’t go away even if we make timestep really small. It

does, however, minimizes the effect.
I It seems we are imparting energy to the ball with each bounce. This

breaks the the law of conservation of energy, which states that “the
total energy of an isolated system remains constant.”
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Bouncing ball total energy
Total energy of the ball is the sum of its kinetic and potential energies.

Kinetic energy = 1
2mv

2

Potential energy = mgy

This behavior is due to incorrect assumptions of Euler method.
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Bouncing Ball
Total energy is conserved when using Runga-Kutta or RK4 solver.
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Euler method
I A numerical solver for first order ODEs
I First order numerical procedure for solving ODEs (initial value

problems)
I It is an explicit method

I Calculates the state of the system at a later time given its current
state by using the update equations

I y(t + ∆t) = F (y(t))

Aside: implicit methods - Calculates the state of the system at a later time
given by solving an equation that includes both the future state and the
current state - G(y(t+ ∆t), y(t)) = 0
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Euler method
I Numerically unstable

I Adversally effects accuracy
I Exhibits error growth over time

I Error is proportional to ∆t

I Particularly unsuited for stiff equations
I Equations containing terms that lead to rapid changes
I E.g., a mass spring system with large spring constant

I Use extremely small time steps
I Infeasible in practice
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Runga-Kutta method
I An other numerical solver for first order ODEs
I An alternate to Euler method
I A family of explicit and implicit methods
I Often RK4 is used

I Error is proportional to ∆t4

I Makes a huge difference for small values of ∆t

Takeaway: whenever possible use RK4 method
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Numerical solvers in Python
from scipy.integrate import ode
def f(self, t, y, arg1):

"""Solves y' = f(t, y)

Arguments:
- y is the state of the system. In our case

y[0] is the position and y[1] is the velocity.
- arg1 is 9.8, as set by set_f_params() method.

Returns vector dy/dt. In our case, dx/dt = v and
dv/dt = -g.
"""

return [y[1], -arg1]

r = ode(f).set_integrator('dop853')
r.set_initial_value([y0, vy0], t0)
r.set_f_params(9.8)

r.integrate(dt)
print r.t, r.y
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Bouncing ball: takeaways
I Exploit your knowledge of physics to determine if simulation is

behaving as expected
I Use several strategies
I Compare outputs of several strategies

I If outputs differ, you must have a way to explain the differences
I If outputs are the same, the simulation may be correct
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Discussion
Q. Why does Euler method performing so poorly for our bouncing ball
example?

A. Euler method assumes that the acceleration remains constant between
two time steps. Notice that this assumption is generally false, but
especially so when the ball “hits” the ground at x = 0. The velocity is
flipped, changing the sign of the derivative and causing a discontinuity.

RK4 method is much better at handling discontinuities (as long as there
aren’t too many of these).

This is why RK4 is able to get good results even for large time steps.
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Bouncing ball

For this simulation, the floor sits at height 0. The ball pierces through the
floor, which is incorrect.
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Bouncing ball
Exercise: we need a better way to handle collisions with the floor.
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Bouncing ball
Need a better way to detect collisions with the floor

Scheme 1

I Use smaller time steps
I The ball will travel less distance between two time steps, and there is

a greater chance of catching the collision instant
I In any case, the ball will penetrate less into the floor

Scheme 2

I Try to find the exact time of collision using x = vt relationship
I Adjust time step accordingly
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Bouncing ball
Collision detection

1. Approximate time to collide tc = x
v

2. Set x = 0 and v = −v(t+ tc)
I Flip v to indicate that the ball is now going back up again

Problem
v is larger than had we calculated tc exactly right (that’s because the
particle is under constant acceleration). Consequently energy is not
conserved.
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Bouncing ball
Use the Law of Conservation of Energy to compute the velocity of the ball
when it touches ground.

The ball was released at height h. We know the total energy of the
system, which is mgh. At the start the kinetic energy is 0.

When the ball touches the ground, its potential energy reduces to 0. Since
the total energy remains the same, all of its energy is now kinetic energy.

1
2mv

2 = mgh

v =
√

2gh

i.e., set x = 0 and v = −
√

2gh at collision time.
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Bouncing ball

Ball doesn’t enter the floor Energy is conserved
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2D elastic band
Simulate a ball (point mass) attached to the origin via an elastic band.

I We assume that the rest length of the band is 0.
I Hook’s law describes the relationship between the extension of the

band and the force it applies on the attached ball

Hook’s law in 1D

F = −kx,

where x is the displacement from the rest length (in this case 0), and k is
the spring constant for the elastic band. F is the force on the ball.
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2D elastic band

Option 1
Use Hook’s Law in 2D

F = −k
(√

x2 + y2
)

So

Fx = −k
(√

x2 + y2
)

cos(θ)

Fy = −k
(√

x2 + y2
)

sin(θ)



47 / 73

2D elastic band

Option 2
Replace 1 2D elastic band with 2 1D
elastic bands. The first band sits
along the x-axis; whereas, the second
band sits along the y-axis.

Fx = −kx

Fy = −ky

!

"

2	elastic	bands
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2D elastic band
Add a damping force that is proportional to the velocity of the ball

Model

Fx = −kx− cvx

Fy = −ky − cvy

How many state variables?
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2D elastic band
Add a damping force that is proportional to the velocity of the ball

Model

Fx = −kx− cvx

Fy = −ky − cvy

How many state variables?

5 = 2 for positions, 2 for velocity and 1 for time
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2D elastic band
Interaction

I User interacts with the ball by dragging it to a new location.
I Dragging to the new location changes the x and y extensions of the

elastic band, effectively changing the forces acting on the ball.
I This is similar to grasping a real ball attached to a spring, and then

letting go of the ball.
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Projectile motion

mx′′ = −γx′

my′′ = −γy′ −mg

Here γ is the friction constant, m is
the mass of the particle, and g is the
acceleration due to gravity.
This model doesn’t take into account
the effects of earth’s gravitational
field.

!

"

#

$

Downward	force	
due	to	gravity

Air	Drag
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Projectile motion
Gravitational force between two masses M and m with is given by
Newton’s Law of Universal Gravitation

F = GM

(R+ y)2 ,

where R+ y is the distance between their centres. $G is the gravitational
constant.

G = 6.674× 10−11N(m/kg)2

The value of g is merely a simplification given by

g = GM

R2 .
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Projectile motion
To model a projectile near the surface of the earth we use

mx′′ = −γx′,

my′′ = −γy′ − GM

(R+ y)2 .

Unlike previous models that you have seen in this course, the above
equations have no analytical solution. You’ll have to solve them
numerically.
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Free-falling particle

Force acting on a particle of mass m falling under
gravity is

F = −mg + Fd,

where Fd is the drag force experienced by the
particle as it moves through the air.
Fd is a velocity dependent drag force. It increases
with velocity and at some point, it will become
equal to the mg, i.e., Fd = mg. The velocity at
which this occurs is referred to the terminal velocity
of the particle.
Once terminal velocity is achieved the particle
experiences 0 net force. The particle still continues
to fall at a constant velocity. Why is that?

mg-

dF !
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Free-falling particle
Terminal velocity
The velocity at which the motion of an object through a fluid is constant
due to the drag force exerted by that fluid.

Terminal velocity depends upon both the particle and the medium through
which it is moving.
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Example: Falling pebble
Consider the fall of a pebble of mass 10−2 kg. The terminal velocity of
this pebble is 30 m/s.

I How long with it take for this pebble to achieve terminal velocity?
I How much distance will this pebble cover before it achieves terminal

velocity?

Observation: The pebble will cover around 50 m to achieve the terminal
velocity. This will take around 3 s.

So if we are dealing with a pebble simulation across these distances (or
times), we need to take into account terminal velocity.



57 / 73

Example: Falling pebble
Takeaway: even when modeling simple systems, such as a free
falling particle, we need to carefully evaluate the conditions so
as not to miss important effects.
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Describing drag in terms of terminal velocity
I Linear drag

F1,d = C1v = mg
v

v1,t

I Quadratic drag

F2,d = C2v
2 = mg

(
v

v1,t

)2
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Modeling a falling coffee filter
Sketch

I Observe a falling coffee filter and record positions vs. times.
I Estimate velocities and accelerations via finite differences.
I Estimate terminal velocity. Recall that the object falls with constant

velocity once terminal velocity is achieved.
I Identify the relationship between acceleration and velocity. Is it linear

or quadratic?
I Right down the equations taking into account your findings.
I Run the simulation and see if it matches your observations.
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Modeling a falling coffee filter

I Observe a falling coffee filter
and record positions vs. times.

I Estimate velocities and
accelerations via finite
differences.

I Estimate terminal velocity.
Recall that the object falls with
constant velocity once terminal
velocity is achieved.

I Identify the relationship between
acceleration and velocity. Is it
linear or quadratic?

I Right down the equations taking
into account your findings.

I Run the simulation and see if it
matches your observations.
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Modeling a falling coffee filter
Takeaway: it is sometimes possible to infer dynamics from
empirical data



62 / 73

Simulating multiple objects
I So far we have simulated single objects
I Now we discuss how to simulate multiple objects?

I The number of objects is a parameter for the simulation.
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Simulating a collection of balls in a square
I Balls move in 2D
I Random initial positions and velocities
I Balls move under the influence of gravity
I Balls bounce off the walls
I Balls pass through each other (i.e., no collisions between balls)
I No friction
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Simulating a collection of balls in a square
Question 1

Say we are interested in simulating n balls in a square. What is the state
size of our simulation?

Answer 1
4n, (x, y) locations and (vx, vy) velocities for each ball.

Question 2

How do we set up the initial state for our simulation, i.e., the initial
locations and initial velocities for each ball?

Answer 2

Random positions and velocities.
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Simulating a collection of balls in a square
What are we missing in this simulation?

I Not handling collisions between balls
I If only a few balls in a very large square, ball-ball collisions may be

rare event.
I If a lot of balls crammed in a small space, we can’t really ignore

ball-ball collisions.
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Ball-ball collisions
I Ball-ball collisions are difficult to do efficiently.

I Unlike ball-wall collisions, where only one object is moving, in ball-ball
collision, both objects are moving.

Naive approach

I At each time step, inspect each pair for possible collision.
I For n balls this leads to n2 inspections.

Other things to consider

What if three balls collide with each other at the same instant? What if n
balls collide with each other at the same instant?
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Object-object collisions
I Efficient collisions between multiple objects is very challenging
I Most simulations only consider these when absolutely necessary

I Gas molecules are small, so when simulating low-density gases in large
volumes, inter-molecules collisions are sometimes ignored.
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What other things have we ignored in our simulation
containing multiple balls in a square?

Brainstorm
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What other things have we ignored in our simulation
containing multiple balls in a square?

I Ball-wall collisions ignore the effects of impact on the wall (and the
balls)

I If the balls were ball bearings, and the walls were made of thin
aluminum then each collision would dent the wall.

I The walls will get bent out of shape over time.
I How would you model walls that bends overtime? This require some

very complicated physics, large computational power, and
sophisticated numerical techniques.

I We also didn’t model the color of the balls
I This would be of interest if we are intrested in light bounces or heat

transfer.
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Guidlines
I We need carefully identify what really needs to be modeled and

simulated.
I We can make simulations arbitrarily complex by considering more

things.
I This makes it harder to produce simulations.
I Simulations will be less efficient.
I Simulations might become less useful.

I We need to know where to draw the line.

Correctly determining the applications of the simulation is an important
first step in getting the model right
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Summary
I Input, output and state variables
I Differential equations are used to model the behavior of state variables
I Numerical solvers for solving differential equations

I Good numerical solvers really only exist for degree 1 differential
equations.

I Transform higher order differential equations to multiple first-order
differential equations.

I This introduces extra state variables
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Summary
I Use of indirect means to determine whether or not our simulation is

correct.
I We used our knowledge of the law of conservation of energy to

identify the problem with our simulation
I Interactions
I Projectile motion

I Our first encounter with an ODE that has no analytical solution
I Drag

I Terminal velocity
I First exposure to infering dynamics from empricial data
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Summary
Simulating multiple objects

I How to model the system?
I How to manage state space?
I Performance
I Problem set up or initialization


