Lab 8 (Carwash)

Simulation and Modeling (CSCI 3010U)

Faisal Qureshi

Due back Dec. 1, 11:59 pm

The goal of this lab is to setup a discrete event system simulation of a carwash. We will
use this model to decide how many wash stations we need to ensure that our customers
remain satisfied. We have spent the last month examining other car washes within the 25
mile radius and have come to the following conclusions.

1. Observed times between the arrival of two successive cars (in minutes): 3, 4, 5, 3, 3,
4,9, 10

2. Time a vehicle spends at a wash station (in minutes): 5, 5, 5, 6, 6, 5, 5, 5, 5

3. Time a vehicle spends at a dry station (in minutes): 1.5, 1.5, 1.7, 1.5, 1.5, 1.5, 1.7,
1.5, 1.4

Tasks

Set up a discrete event simulation that allows us to change the number of wash stations
and dry stations and study the effect of these changes on the total time a car has to spend
at the car wash. Our assumption is that customers will become irate if they have to spend
too long at the car wash. The key challenge is that we don’t have unlimited resources, so
we want to install just the right number of wash and dry stations to keep our customers
satisfied. We have been told that wait times at competing car washes is roughly 15 to 20
minutes. If we can beat these numbers that will be awesome.

Programming

You will need to find a way to generate random values for a) observed times between the
arrival of vehicles, b) time a vehicle spends at a wash stations and c) time a vehicle spends
at a dry station. You can choose to use raw data provided above to generate the random
numbers. Or you can choose to set up an empirical distribution and use it to generate the
desired random numbers. Alternately you choose to fit a theoretical distribution to the
data and use it to generate the random numbers in question.

Fitting Theoretical Distributions to Data

The following Python code fits a Gaussian (Normal) distribution to observed data.

from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt

Generating samples
samp = norm.rvs(loc=0,scale=1,size=150)

Fitting a Gaussian distribution
param = norm.fit(samp)

mean = param[0]

var = param[1]

x = np.linspace(-5,5,100)
pdf_fitted = norm.pdf(x,loc=param[0],scale=param[1])
pdf = norm.pdf (x)

plt.figure()

plt.title('Normal distribution')
plt.plot(x,pdf_fitted, 'r-',x,pdf, 'b-")
plt.hist(samp,normed=1,alpha=.3)
plt.show()

Carwash Simulation using Simpy

The following Python code sets a up simply carwash with only carwash stations using
Simpy package, which allows us to set up discrete event simulations in Python. This
example is taken from https://simpy.readthedocs.io/en/latest/

import random
import simpy
import numpy as np

RANDOM_SEED = 42

NUM_MACHINES = 3 # Number of machines in the carwash
WASHTIME = 10 # Minutes ¢t takes to clean a car
T_INTER = 3 # Create a car every ~7 minutes
SIM_TIME = 200 # Stmulation time im minutes

stats = {}
stats['cars'] = []
stats['waittimes'] = []

stats['totaltimes'] = []

class Carwash(object):
nnng carwash has a limited number of machines (" NUM_MACHINES® ") to
clean cars in parallel.

Cars have to request one of the machines. When they got one, they
can start the washing processes and wait for it to finish (which

https://simpy.readthedocs.io/en/latest/

takes "~ “washtime’ minutes).

nimnn

def __init__(self, env, num_machines, washtime):
self.env = env
self .machine = simpy.Resource(env, num_machines)
self.washtime = washtime

def wash(self, car):
"""The washing processes. It takes a "~ “car’ ~ processes and tries
to clean zt."""
yield self.env.timeout(random.randint (WASHTIME - 2, WASHTIME + 2))
print("Carwash removed %d%% of %s's dirt." %

(random.randint (50, 99), car))

def car(env, name, cw, stats):
"""The car process (each car has a "~“name’ ") arrives at the carwash
(""cw ") and requests a cleaning machine.

It then starts the washing process, watts for it to finish and
leaves to mever come back ...

nimnn

stats['cars'].append(name)

print('%s arrives at the carwash at %.2f.' 7, (name, env.now))
arrival_time = env.now
with cw.machine.request() as request:

yield request

print('Ys enters the carwash at %.2f.' 7 (name, env.now))
enter_time = env.now
yield env.process(cw.wash(name))

print('Y%s leaves the carwash at %.2f.' 7 (name, env.now))
leave_time = env.now

stats['waittimes'].append(enter_time - arrival_time)
stats['totaltimes'].append(leave_time - arrival_time)

def setup(env, num_machines, washtime, t_inter, stats):
"""Create a carwash, a number of initial cars and keep creating cars
approx. every ~“t_inter minutes."""
Create the carwash

carwash = Carwash(env, num_machines, washtime)

Create 4 initial cars
for i in range(4):
env.process(car(env, 'Car d' % i, carwash, stats))

Create more cars while the simulation s running

while True:
yield env.timeout(random.randint(t_inter - 2, t_inter + 2))
i+=1
env.process(car(env, 'Car %d' 7 i, carwash, stats))

Setup and start the simulation
print('Carwash')
random.seed (RANDOM_SEED) # This helps reproducing the results

Create an environment and start the setup process
env = simpy.Environment ()
env.process(setup(env, NUM_MACHINES, WASHTIME, T_INTER, stats))

Ezxzecute!
env.run(until=SIM_TIME)

print 'stats'
print stats

import matplotlib.pyplot as plt

plt.figure()

plt.hist(stats['totaltimes'], color='crimson', edgecolor='black', linewidth=1.2)
plt.xlabel('Time (in minutes)')

plt.title('Total time spent in the carwash')

plt.ylabel('Number of cars')

plt.show()

This code only includes wash stations. You will need to modify it appropriately to also
support dry stations. You’ll also need to change it to use the random numbers correctly
(i.e., use random numbers derived from the observed data).

It is possible to install Simpy on Anaconda distributions using conda install -c
asmeurer simpy command from the terminal.

Submission

Via Blackboard.

e Python file that includes your code.
e A pdf file containing the plots.

	Tasks
	Programming
	Fitting Theoretical Distributions to Data
	Carwash Simulation using Simpy

	Submission

